K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2021

a)\(\sqrt{25}+\sqrt{9}=5+3=8\)

\(\sqrt{25+9}=\sqrt{36}=6\)

Do \( 8>6\)

\(\Rightarrow\)\(\sqrt{25}+\sqrt{9}>\sqrt{25+9}\)

9 tháng 7 2021

undefined

31 tháng 3 2017

a) Tính √25 + √9 rồi so sánh kết quả với .

Trả lời: < √25 + √9.

b) Ta có: = a + b và

= + 2√a.√b +

= a + b + 2√a.√b.

Vì a > 0, b > 0 nên √a.√b > 0.

Do đó < √a + √b


3 tháng 4 2017

a) Tính √25 + √9 rồi so sánh kết quả với .

Trả lời: < √25 + √9.

b) Ta có: = a + b và

= + 2√a.√b +

= a + b + 2√a.√b.

Vì a > 0, b > 0 nên √a.√b > 0.

Do đó < √a + √b

2 tháng 9 2017

a) \(\sqrt{36-25}=\sqrt{11}\)

   \(\sqrt{36}-\sqrt{25}=6-5=1\)

 Suy ra \(\sqrt{36-25}>\sqrt{36}-\sqrt{25}\)

2 tháng 9 2017

a,\(\sqrt{36-25}=-1\)

\(\sqrt{36}-\sqrt{25}=1\)

Vậy: \(\sqrt{36-25}< \sqrt{36}-\sqrt{25}\)

31 tháng 3 2017

a) HD: Thực hiện phép khai căn rồi so sánh kết quả.

Trả lời: > √25 - √16;.

b) HD: Ta có thể chứng minh rằng √a < + √b.

Nhưng điều này suy ra từ kết quả bài tập 26.b) SGK nếu lưu ý rằng

√a = .

20 tháng 7 2017

a) Ta có:

\(\sqrt{25-16}=\sqrt{9}=3\);

\(\sqrt{25}-\sqrt{16}=5-4=1\).

Vì 1 < 3 nên \(\sqrt{25}-\sqrt{16}< \sqrt{25-16}\).

b) Ta có:

\(\sqrt{a}=\sqrt{a-b+b}=\sqrt{(a-b)+b}\)

mà ta đã biết:

\(\sqrt{(a-b)+b}< \sqrt{a-b}+\sqrt{b}\)

\(\Leftrightarrow\sqrt{a}< \sqrt{a-b}+\sqrt{b}\)

\(\Leftrightarrow\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

Vậy \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\).

14 tháng 8 2016

b) Ta sẽ chứng minh bằng biến đổi tương đương :)

Ta có : \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

\(\Leftrightarrow a+b-2\sqrt{ab}< a-b\)

\(\Leftrightarrow2b-2\sqrt{ab}< 0\)

\(\Leftrightarrow2\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\) (1)

Vì a>b nên \(b-a< 0\Leftrightarrow\left(\sqrt{b}-\sqrt{a}\right)\left(\sqrt{b}+\sqrt{a}\right)< 0\Leftrightarrow\sqrt{b}-\sqrt{a}< 0\) (vì \(\sqrt{a}+\sqrt{b}>0\))

Lại có \(\sqrt{b}>0\) \(\Rightarrow2\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\) đúng.

Vì bđt cuối đúng nên bđt ban đầu được chứng minh

14 tháng 8 2016

\(\sqrt{25-16}=\sqrt{9}=3\)

\(\sqrt{25}-\sqrt{16}=5-4=1\)

\(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

21 tháng 6 2019

1/ Bình phương hai vế, ta cần chứng minh \(a+b+2\sqrt{ab}>a+b\Leftrightarrow2\sqrt{ab}>0\)

Mà ta có \(2\sqrt{ab}\ge0\text{ Nhưng theo đề bài dấu "=" không xảy ra nên ta có đpcm. }\)

5 tháng 7 2018

\(1.\) Gỉa sử : \(\sqrt{25-16}< \sqrt{25}-\sqrt{16}\)

\(\Leftrightarrow3< 1\) ( Vô lý )

\(\Rightarrow\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

\(2.\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)

\(\Leftrightarrow a-2\sqrt{ab}+b< a-b\)

\(\Leftrightarrow2b-2\sqrt{ab}< 0\)

\(\Leftrightarrow2\left(b-\sqrt{ab}\right)< 0\)

Ta có :\(a>b\Leftrightarrow ab>b^2\Leftrightarrow\sqrt{ab}>b\)

\(\RightarrowĐpcm.\)

\(2a.\) Áp dụng BĐT Cauchy , ta có :

\(a+b\ge2\sqrt{ab}\left(a;b\ge0\right)\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(b.\) Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\left(x,y>0\right)\left(1\right)\)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\left(y,z>0\right)\left(2\right)\)

\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{xz}}\left(x,z>0\right)\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3 ) , ta được :

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)

5 tháng 7 2018

\(3a.\sqrt{x-4}=a\left(a\in R\right)\left(x\ge4;a\ge0\right)\)

\(\Leftrightarrow x-4=a^2\)

\(\Leftrightarrow x=a^2+4\left(TM\right)\)

\(3b.\sqrt{x+4}=x+2\left(x\ge-2\right)\)

\(\Leftrightarrow x+4=x^2+4x+4\)

\(\Leftrightarrow x^2+3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)

KL....

3 tháng 8 2017

1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)

\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)

c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)

Vậy \(x>4\)thì \(R>0\)

2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)

Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)

3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)

b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)

23 tháng 5 2021

a) -√a                                            b) -5ab√ab

29 tháng 5 2021

-\sqrt{a}a;                              b) -5 a b \sqrt{a b}5abab.

23 tháng 8 2019

a, \(A=\sqrt{\left(1-x\right)^2}-1=\left|1-x\right|-1=1-x-1\)(vì x<1)

<=> A=\(-x\)

b,B=\(\frac{3-\sqrt{x}}{x-9}\left(x\ge0,x\ne9\right)\)

=\(\frac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)

Vậy \(B=-\frac{1}{\sqrt{x}+3}\)

c, C=\(\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}\left(x\ge0,x\ne9\right)\)

=\(\frac{x-2\sqrt{x}-3\sqrt{x}+6}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)=\(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)=\(\sqrt{x}-2\)

Vậy C= \(\sqrt{x}-2\)

d, D=\(5-3x-\sqrt{25-10x+x^2}\left(x< 5\right)\)

= \(5-3x-\sqrt{\left(5-x\right)^2}\)=\(5-3x-\left|5-x\right|\)=\(5-3x-5+x\) (vì x<5)=-2x

Vậy D=-2x

e, E=\(\sqrt{3a}.\sqrt{27a}\) (đk \(a\ge0\))

=\(\sqrt{3.27.a^2}=\sqrt{3^4}.a=9a\)

Vậy E=9a

f, F=\(\frac{1}{a-1}\sqrt{9\left(a-1\right)^2}\) (đk :a>1)

= \(\frac{1}{a-1}.3\left|a-1\right|\)=\(\frac{1}{a-1}.3\left(a-1\right)\) (vì a>1)=3

Vậy F=3