Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a(a+b+c)+b(a+b+c)+c(a+b+c)=-12+18+30
(a+b+c)(a+b+c)=36
suy ra. (a+b+c)=6 hoặc -6
+). (a+b+c)=6
Suy ra. a=-2
b=3
c=5
trường hợp trên loại vì ab=-6 >5
+). (a+b+c)=-6
a=2
b=-3
c=-5
trường hợp trên loại vì ab=-6 >-5
ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b=2 thì
(1) => a=c/2 <=> c=2a
ta có: ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ với a=3 thì c= 2*3 = 6 (thỏa)
_với a=-3 thì c= 2*-3 =-6 (thỏa)
(*) Với b=-2 thì
(1) => a=c/-2 <=> c=-2a
ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ với a=3 thì c= -2*3 = -6 (thỏa)
_với a=-3 thì c= -2*-3 =6 (thỏa)
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }
a) a.b= 3/5; b.c=4/5; a.c=3/4
b) a.( a+b+c)=-12
b.( a+b+c )=18
c.( a+b+c)= 30
c) a.b=c
b.c=4.a
a.c=9.b
a,a.b/b.c=a/c=3/4
a/c.a.c=a.a=3/4*3/4
=>a=3/4hoặc-3/4
rồi suy a,b,c
a.( a+b+c)=-12=A
b.( a+b+c )=18=B
c.( a+b+c)= 30=C
A+B+C=(a+b+c)(a+b+c)=36
a+b+c=6hoặc -6
ghép vào A,B,C suy ra a,b,c
c,a.b.b.c.a.c=c.4.a.9.b
a.b.c=4.9=36
a.b=c
=>a.b.c=c.c=36
=>c=6 hoặc -6
=>a,b,c
hồi ôn thi học sinh giỏi chị gặp bài này...đam bảo đúng
a) ab=3/5; bc=4/5; ca=3/4
=> (abc)2 = (3/4).(4/5).(3/4)=9/25
=>abc=3/5
Ta có: abc=3/5
ab=3/5
=> c=1
Ta có: abc=3/5
bc=4/5
=> a=3/4
Ta có: abc=3/5
ca=3/4
=> b=4/5
Vậy a=3/4; b=4/5; c=1
a, \(\dfrac{a}{b}\) = \(\dfrac{3}{5}\) ⇒ a = \(\dfrac{3}{5}\)b; \(\dfrac{b}{c}\) = \(\dfrac{4}{5}\) ⇒ c = b : \(\dfrac{4}{5}\) = \(\dfrac{5}{4}\)b
⇒ a.c = \(\dfrac{3}{5}\)b. \(\dfrac{5}{4}\)b = \(\dfrac{3}{4}\) ⇒ b2.\(\dfrac{3}{4}\) = \(\dfrac{3}{4}\) ⇒ b2 = 1 ⇒ \(\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}a=\dfrac{3}{5}\\a=-\dfrac{3}{5}\end{matrix}\right.\); \(\left[{}\begin{matrix}c=\dfrac{5}{4}\\c=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy các cặp số a;b;c thỏa mãn đề bài là:
(a; b; c) = (-\(\dfrac{3}{5}\); -1; - \(\dfrac{5}{4}\)) ; (\(\dfrac{3}{5}\); 1; \(\dfrac{5}{4}\))
b, a.(a+b+c) = -12; b.(a+b+c) =18; c.(a+b+c) = 30
⇒a.(a+b+c) - b.(a+b+c) + c.(a+b+c) = -12 + 18 + 30
⇒ (a +b+c)(a-b+c) = 0
⇒ a - b + c = 0 ⇒ a + c =b
Thay a + c = b vào biểu thức: b.(a+b+c) =18 ta có:
b.(b + b) = 18
2b.b = 18
b2 = 18: 2
b2 = 9 ⇒ \(\left[{}\begin{matrix}b=-3\\b=3\end{matrix}\right.\)
Thay a + c = b vào biểu thức c.(a + b + c) = 30 ta có:
c.(b+b) = 30 ⇒ 2bc = 30 ⇒ bc = 30: 2 = 15 ⇒ c = \(\dfrac{15}{b}\)
Thay a + c = b vào biểu thức a.(a+b+c) = -12 ta có:
a.(b + b) = -12 ⇒2ab = -12 ⇒ ab = -12 : 2 = - 6 ⇒ a = - \(\dfrac{6}{b}\)
Lập bảng ta có:
b | -3 | 3 |
a = \(-\dfrac{6}{b}\) | 2 | -2 |
c = \(\dfrac{15}{b}\) | -5 | 5 |
Vậy các cặp số a; b; c thỏa mãn đề bài là:
(a; b; c) = (2; -3; -5); (-2; 3; 5)
a) \(ab=\dfrac{3}{5};bc=\dfrac{4}{5};ca=\dfrac{3}{4}\)
\(\Leftrightarrow ab.bc.ca=\dfrac{3}{5}.\dfrac{4}{5}.\dfrac{3}{4}\)
\(\Leftrightarrow a^2.b^2.c^2=\dfrac{9}{25}\)
\(\Leftrightarrow\left(abc\right)^2=\left(\dfrac{3}{5}\right)^2=\left(-\dfrac{3}{5}\right)^2\)
+ Khi \(\left(abc\right)^2=\left(\dfrac{3}{5}\right)^2\Leftrightarrow abc=\dfrac{3}{5}\)
Vậy \(\left\{{}\begin{matrix}a=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\\b=\dfrac{3}{5}:\dfrac{3}{4}=\dfrac{4}{5}\\c=\dfrac{3}{5}:\dfrac{3}{5}=1\end{matrix}\right.\)
+ Khi \(\left(abc\right)^2=\left(-\dfrac{3}{5}\right)^2\Leftrightarrow abc=-\dfrac{3}{5}\)
Vậy \(\left\{{}\begin{matrix}a=\left(-\dfrac{3}{5}\right):\dfrac{4}{5}=-\dfrac{3}{4}\\b=\left(-\dfrac{3}{5}\right):\dfrac{3}{4}=-\dfrac{4}{5}\\c=\left(-\dfrac{3}{5}\right):\dfrac{3}{5}=-1\end{matrix}\right.\)
b) \(a\left(a+b+c\right)=-12;b\left(a+b+c\right)=18;c\left(a+b+c\right)=30\)
\(\Leftrightarrow a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=\left(-12\right)+18+30\)
\(\Leftrightarrow\left(a+b+c\right)\left(a+b+c\right)=36\)
\(\Leftrightarrow\left(a+b+c\right)^2=6^2=\left(-6\right)^2\)
+ Khi \(\left(a+b+c\right)^2=6^2\Leftrightarrow a+b+c=6\)
Vậy \(\left\{{}\begin{matrix}a=\left(-12\right):6=-2\\b=18:6=3\\c=30:6=5\end{matrix}\right.\)
+ Khi \(\left(a+b+c\right)^2=\left(-6\right)^2\Leftrightarrow a+b+c=-6\)
Vậy \(\left\{{}\begin{matrix}a=\left(-12\right):\left(-6\right)=2\\b=18:\left(-6\right)=-3\\c=30:\left(-6\right)=-5\end{matrix}\right.\)
c) \(ab=c;bc=4a;ac=9b\)
Kiểm tra lại đề bài xem có thiếu điều kiện không.
Cứ theo khẳng định của Nguyễn Thị Ngọc Linh thì đề c) không thiếu gì. Xin giải tiếp.
c) \(ab=c;bc=4a;ac=9b\)
\(\Leftrightarrow ab.bc.ac=c.4a.9b\)
\(\Leftrightarrow\left(abc\right)\left(abc\right)=36\left(abc\right)\)
\(\Leftrightarrow abc=36\)
+ Vì \(ab=c\Leftrightarrow cc=36\Leftrightarrow c^2=6^2=\left(-6\right)^2\)
+ Vì \(bc=4a\Leftrightarrow a.4a=36\Leftrightarrow4a^2=36\Leftrightarrow a^2=9=3^2=\left(-3\right)^2\)
+ Vì \(ac=9b\Leftrightarrow b.9b=36\Leftrightarrow9b^2=36\Leftrightarrow b^2=4=2^2=\left(-2\right)^2\)
Vậy \(\left\{{}\begin{matrix}a_1=3;a_2=-3\\b_1=2;b_2=-2\\c_1=6;c_2=-6\end{matrix}\right.\)
ab = c; bc = 4a; ac = 9b
=> ab.bc.ac = c.4a.9b
=> abc.abc = 36.abc
=> abc = 36
=> a.4a = a2.4 = 36 => a2 = 9. Mà a dương => a = 3
=> b.9b = b2.9 = 36 => b2 = 4. Mà b dương => b = 2
=> c = 36 : 3 : 2 = 6
Vậy a = 3; b = 2; c = 6.
ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b=2 thì
(1) => a=c/2 <=> c=2a
ta có: ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ với a=3 thì c= 2*3 = 6 (thỏa)
_với a=-3 thì c= 2*-3 =-6 (thỏa)
(*) Với b=-2 thì
(1) => a=c/-2 <=> c=-2a
ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ với a=3 thì c= -2*3 = -6 (thỏa)
_với a=-3 thì c= -2*-3 =6 (thỏa)
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }