Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2x + 1)2 + 2(2x + 1)(5x - 1) + (5x - 1)2 = (2x + 1 + 5x - 1)2 = (7x)2 = 49x2
b) (x2 - 1)(x + 2) - (x - 1)(x2 + x + 1) = x3 + 2x2 - x - 2 - x3 + 1 = 2x2 - x - 1
b)
\(\left(x+2\right)^4=y^3+x^4\)
\(\Leftrightarrow y^3=\left(x+2\right)^4-x^4=x^4+8x^3+24x^2+32x+16-x^4\)
\(\Leftrightarrow y^3=8x^3+24x^2+32x+16\)
+ Vì \(24x^2+32x+16=4\left(6x^2+8x+4\right)=4\left[2x^2+4\left(x+1\right)^2\right]>0\forall x\)
\(\Rightarrow y^3>8x^3=\left(2x\right)^3\) (1)
+ Xét \(M=\left(2x+3\right)^3-y^3=8x^3+36x^2+54x+27-8x^3-24x^2-32x-16\)
\(\Rightarrow M=12x^2+22x+11=x^2+11\left(x+1\right)^2>0\forall x\) (2)
Từ (1) và (2) \(\Rightarrow\left(2x\right)^3< y^3< \left(2x+3\right)^3\)
\(\Rightarrow\orbr{\begin{cases}y=2x+1\\y=2x+2\end{cases}}\)
* Với \(y=2x+1\), thay vào biểu thức ta có :
\(\left(2x+1\right)^3=8x^3+24x^2+32x+16\)
\(\Leftrightarrow8x^3+12x^2+6x+1=8x^3+24x^2+32x+16\)
\(\Leftrightarrow12x^2+26x+15=0\)
\(\Leftrightarrow2x\left(6x+13\right)=-15\)
Vì x nguyên nên \(2x\left(6x+13\right)⋮2\), mà -15 ko chia hết cho 2 nên PT vô nghiệm
* Với \(y=2x+2\), ta có :
\(\left(2x+2\right)^3=8x^3+24x^2+32x+16\)
\(\Leftrightarrow8x^3+24x^2+24x+8=8x^3+24x^2+32x+16\)
\(\Leftrightarrow8x+8=0\)
\(\Leftrightarrow x=-1\)
Suy ra : \(y=2.\left(-1\right)+2=0\)
Vây PT có nghiệm \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
a)
\(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow x^2+2xy+y^2=x^2y^2+xy\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
Suy ra : \(\orbr{\begin{cases}xy=0\\xy+1=0\end{cases}}\)
+ Với \(xy=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)
Thay vào biểu thức ta đc \(x=y=0\)
+ Với \(xy+1=0\Leftrightarrow xy=-1\)
Vì x, y nguyên nên \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)
Thay vao biểu thức ta thấy thỏa mãn !
Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(1;-1\right);\left(-1;1\right)\right\}\)
bài 2
P= (x+1)(x2-x+1)+x-(x-1)(x2+x+1)+2010 với x = -2010
= (x3+1) + x - (x3-1) + 2010
= x3 + 1 + x - x3 + 1 + 2010
= x + 2 + 2010
= 2010 + 2 + 2010
=4022
Q=16x(4x2-5)-(4x+1)(16x2-4x + 1) với x = 1/5
= (4x)3-16.5x - [(4x)3+1]
= (4x)3 - 16.5x - (4x)3 - 1
= -16.5x - 1
= -16.5.1/5 - 1
= -16-1
=-17
a) (x-3)(x2+3x+9)-x(x-4)(x+4)=41
<=> x3 - 33 - x(x2 - 42) = 41
<=> x3 - 27 - x3 + 16x = 41
<=> 16x = 68
<=> x= 4,25
b) (x+2)(x2-2x+4)-x(x2+2)=4
<=> x3 + 23 - x3 - 2x =4
<=> 8 - 2x = 4
<=> 2x = 4
<=> x= 1/2
Ta có: \(\frac{x^2-\frac{1}{x^2}}{x^2+\frac{1}{x^2}}=a\Leftrightarrow\frac{x^4+\frac{1}{x^4}-2}{x^4+\frac{1}{x^4}+2}=a^2\) (bình phương 2 vế)
\(\Leftrightarrow1-\frac{4}{x^4+\frac{1}{x^4}+2}=a^2\Leftrightarrow x^4+\frac{1}{x^4}+2=\frac{4}{1-a^2}\Leftrightarrow x^4+\frac{1}{x^4}=\frac{2+2a^2}{1-a^2}\)(1)
Lại có: \(\frac{x^2-\frac{1}{x^2}}{x^2+\frac{1}{x^2}}=a\Leftrightarrow\frac{x^4-\frac{1}{x^4}}{\left(x^2+\frac{1}{x^2}\right)^2}=a\Leftrightarrow\frac{x^4-\frac{1}{x^4}}{x^4+\frac{1}{x^4}+2}=a\)
\(\Leftrightarrow\frac{x^4-\frac{1}{x^4}}{\frac{2+2a^2}{1-a^2}+2}=a\) ( thay (1) vào) \(\Leftrightarrow x^4-\frac{1}{x^4}=\frac{4a}{1-a^2}\) (2)
Từ (1) và (2) \(\Rightarrow M=\frac{x^4-\frac{1}{x^4}}{x^4+\frac{1}{x^4}}=\frac{\frac{4a}{1-a^2}}{\frac{2+2a^2}{1-a^2}}=\frac{2a}{1+a^2}\)
\(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=-12\)
\(3x^2+2x+x^2+2x+1-4x^2-25=-12\)
\(4x=-12-1+25\)
\(4x=12\)
\(x=3\)
\(x\left(3x-2\right)+\left(x+1\right)^2-4x^2-25=-12\)
\(3x^2-2x+x^2+2x+1-4x^2-25=-12\)
\(0x=-12-1+25\)
\(0x=12\)
=> phương trình vô nghiệm