K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2021

Ta có: \(\frac{x^2-\frac{1}{x^2}}{x^2+\frac{1}{x^2}}=a\Leftrightarrow\frac{x^4+\frac{1}{x^4}-2}{x^4+\frac{1}{x^4}+2}=a^2\) (bình phương 2 vế)

\(\Leftrightarrow1-\frac{4}{x^4+\frac{1}{x^4}+2}=a^2\Leftrightarrow x^4+\frac{1}{x^4}+2=\frac{4}{1-a^2}\Leftrightarrow x^4+\frac{1}{x^4}=\frac{2+2a^2}{1-a^2}\)(1)

Lại có: \(\frac{x^2-\frac{1}{x^2}}{x^2+\frac{1}{x^2}}=a\Leftrightarrow\frac{x^4-\frac{1}{x^4}}{\left(x^2+\frac{1}{x^2}\right)^2}=a\Leftrightarrow\frac{x^4-\frac{1}{x^4}}{x^4+\frac{1}{x^4}+2}=a\)

\(\Leftrightarrow\frac{x^4-\frac{1}{x^4}}{\frac{2+2a^2}{1-a^2}+2}=a\) ( thay (1) vào) \(\Leftrightarrow x^4-\frac{1}{x^4}=\frac{4a}{1-a^2}\)  (2)

Từ (1) và (2) \(\Rightarrow M=\frac{x^4-\frac{1}{x^4}}{x^4+\frac{1}{x^4}}=\frac{\frac{4a}{1-a^2}}{\frac{2+2a^2}{1-a^2}}=\frac{2a}{1+a^2}\)

17 tháng 10 2015

câu 2 : (x-3)(x-1)(x+1)(x+3)+15

=(x^2-9)(x^2-1)+15

đặt y=x^2-5 ta có

(y-4)(y+4)+15=y^2-16+15=y^2-1=(y+1)(y-1)=(x^2-6)(x^2-4)=(x^2-6)(x-2)(x+2)

12 tháng 8 2018

bài 2

P= (x+1)(x2-x+1)+x-(x-1)(x2+x+1)+2010 với x = -2010

= (x3+1) + x - (x3-1) + 2010

= x3 + 1 + x - x3 + 1 + 2010

= x + 2 + 2010

= 2010 + 2 + 2010

=4022

Q=16x(4x2-5)-(4x+1)(16x2-4x + 1) với x = 1/5 

= (4x)3-16.5x - [(4x)3+1]

= (4x)3 - 16.5x - (4x)3 - 1

= -16.5x - 1

= -16.5.1/5 - 1

= -16-1

=-17

12 tháng 8 2018

a) (x-3)(x2+3x+9)-x(x-4)(x+4)=41

<=> x3 - 33 - x(x2 - 42) = 41

<=> x3 - 27 - x3 + 16x = 41

<=> 16x = 68

<=> x= 4,25

b) (x+2)(x2-2x+4)-x(x2+2)=4

<=> x3 + 23 - x - 2x =4

<=> 8 - 2x = 4

<=> 2x = 4

<=> x= 1/2

19 tháng 5 2019

a/    Ta có :     (x2 + x + 1)2 = [x2 + (x + 1)]2 = x4  + 2x2(x + 1) + (x + 1)2  Nên: 

A = (x + 1)4 + (x2 + x + 1)2 = (x + 1)4 + x4 + 2x2(x + 1) + (x + 1)2 = [(x + 1)+ (x + 1)2] + [x4 + 2x2(x + 1)] 

    = (x + 1)2(x2 + 2x + 2) + x2(x2 + 2x + 2) = (x2 + 2x + 2)(2x2 + 2x + 1).

b/  B = x10 + x5 + 1  Đặt  \(|x^5|=t^2\) thì x10 = t4  Ta có B = t4 + t2 + 1 = (t2 + 1)2 - t2 = (t2 - t + 1)(t2 + t + 1)

      Vậy :  \(B=\left(x^5-\sqrt{|x|^5}+1\right)\left(x^5+\sqrt{|x|^5}+1\right).\)   

c/  Nhân đa thức được:      C =  x2(x4 - 1)(x2 + 2) + 1 = (x6 - x2)(x2 + 2) + 1 = x6 (x2 + 2) - x2 (x2 + 2) + 1

                                              C = x8 + 2x6 - x4 - 2x2 + 1 = x8 + 2x6 - 2x4 + x4 - 2x2 + 1 = (x4)2 + 2x4 (x2 - 1) + (x2 - 1)2  

                                              C =  (x4 + x2 + 1)2 .

d/   D = 1 + ( a + b + c) + ab + bc + ca) + abc = (1 + a) + (abc + bc) + (b + ab) + (c + ca) = (1 + a) + bc(1 + a) + b(1 + a) + c(1 + a) =

           = (1 + a)(1 + bc + b + c) = (1 + a)[(1 + b) + c(1 + b)] = (1 + a)(1 + b)(1 + c). 

18 tháng 5 2019

\(b,\)\(x^{10}+x^5+1\)

\(=x^{10}-x^7+x^7+x^5+x^3-x^3+1\)

\(=x^7\left(x^3-1\right)+x^3\left(x^4+x^2+1\right)-\left(x^3-1\right)\)

\(=x^7\left(x-1\right)\left(x^2+x+1\right)+x^3\left(x^4+2x^2+1-x^2\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^7\left(x-1\right)\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)\left(x^2-x+1\right)\)\(-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)

18 tháng 5 2019

\(d,\)\(1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)

\(=1+a+b+c+ab+bc+ca+abc\)

\(=\left(ab+b\right)+\left(abc+bc\right)+\left(ac+c\right)+\left(a+1\right)\)

\(=b\left(a+1\right)+bc\left(a+1\right)+c\left(a+1\right)+\left(a+1\right)\)

\(=\left(a+1\right)\left(b+bc+c+1\right)\)

\(=\left(a+1\right)\left[b\left(c+1\right)+\left(c+1\right)\right]\)

\(=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

21 tháng 7 2016

ai giúp tôi với

14 tháng 8 2019

1)a)x+y=60

<=>(x+y)^2=3600

<=>x^2+2xy+y^2=3600(1)

mà xy=35 nên 2xy=2.35=70

(1)<=>x^2+70+y^2=3600

<=>x^2+y^2=3530

<=>(x^2+y^2)^2=12460900

<=>x^4+2x^2.y^2+y^4=12460900(2)

mà xy=35 nên 2x.x.y.y=2450

(2)<=>x^4+y^4=123458450

 b)x+y=1

<=>(x+y)^3=1

<=>x^3+3x^2y+3xy^2+y^3=1

<=>x^3+y^3+3xy(x+y)=1

<=>x^3+y^3+3xy=1

=>M=1

x+y=1

<=>x^2+2xy+y^2=1(1)

B=x^3+y^3+3xy(x^2+y^2)+3xy(2xy)

=x^3+y^3+3xy(x^2+2xy+y^2)

=M.1=1(từ(1)

c)

x-y=1

<=>(x-y)^3=1

<=>x^3-3x^2y+3xy^2-y^3=1

<=>x^3-y^3-3xy(x-y)=1

<=>x^3-y^3-3xy=1

=>N=1

a: \(\Leftrightarrow5x^2-20x-41=x^2-10x+25+4x^2+4x+1-x^2+2x+\left(x-1\right)^2\)

\(\Leftrightarrow5x^2-20x-41=4x^2-4x+26+x^2-2x+1\)

\(\Leftrightarrow5x^2-20x-41=5x^2-6x+27\)

=>-14x=68

hay x=-34/7

b: \(\Leftrightarrow x^2-25-x^3+6x^2-12x+8-7x^2+x^3+1=\left(x+3\right)^3-x^3-9x^2\)

\(\Leftrightarrow-12x-16=x^3+9x^2+27x+27-x^3-9x^2=27x+27\)

=>-39x=43

hay x=-43/39