K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

b) Ta có : x2 + 8x + 12

= x2 - 4 + 8x + 16

= (x - 2)(x + 2) + 8(x + 2)

= (x + 2)(x - 2 + 8)

= (x + 2)(x + 6)

11 tháng 8 2017

ta có \(x^2+8x+12\)

=\(x^2-4+8x+16\)

=\(\left(x-2\right)\left(x+2\right)+8\left(x+2\right)\)

=\(\left(x+2\right)\left(x-2+8\right)\)

=\(\left(x+2\right)\left(x+6\right)\)

28 tháng 9 2017

a) x\(^2\)+8x  +15 

=( x\(^2\)+3x) + ( 5x +15)

= x(x+3)+ 5 (x+3)

=(x+3) (x+5)

b)x\(^2\)-4x-12

=( x\(^2\)- 6x) +( 2x -12)

=x(x-6) + 2 (x-6)

=(x - 6) (x+2)

c)9x\(^2\)-6x-24

 =(9x\(^2\)-18x)+ (12x-24)

=9x(x-2) + 12 (x -2 )

=(x-2) (9x+12)

28 tháng 9 2017

a)  \(x^2+8x+15\)

\(=x^2+8x+16-1\)

\(=\left(x^2+8x+16\right)-1\)

\(=\left(x+4\right)^2-1\)

\(=\left(x+4-1\right)\left(x+4+1\right)\)

\(=\left(x+3\right)\left(x+5\right)\)

b) \(x^2-4x-12\)

\(=x^2-4x+4-16\)

\(=\left(x^2-4x+4\right)-4^2\)

\(=\left(x-2\right)^2-4^2\)

\(=\left(x-2-4\right)\left(x-2+4\right)\)

\(=\left(x-6\right)\left(x+2\right)\)

c) \(9x^2-6x-24\)

\(=9x^2-6x+1-25\)

\(=\left(9x^2-6x+1\right)-5^2\)

\(=\left(3x-1\right)^2-5^2\)

\(=\left(3x-1-5\right)\left(3x-1+5\right)\)

\(=\left(3x-6\right)\left(3x+4\right)\)

2 tháng 10 2016

a) \(4a^3b^3c^2x+12a^3b^4c^2-16a^4b^5cx\)

\(=4a^3b^3c\left(cx+3bc-4ab^2x\right)\)

b) \(\left(b-2c\right)\left(a-b\right)-\left(a+b\right)\left(2c-b\right)\)

\(=\left(b-2c\right)\left(a-b+a+b\right)=2a\left(b-2c\right)\)

c) \(3a\left(a+5\right)-2\left(5+a\right)=\left(a+5\right)\left(3a-2\right)\)

d) \(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)\)

4 tháng 8 2016

a)x^2.16-4xy+4y^2

<=>16.x^2-2x2y+(2y)^2

<=>16(x-2y)^2

b)x^5-x^4+x^3-x^2

<=>(x^5-x^4)+(x^3-x^2)

<=>x^4(x-1)+x^2(x-1)

<=>(x-1)(x^4+x^2)

c)x^5+x^3-x^2-1

<=>(x^5+x^3)-(x^2+1)

<=>x^3(x^2+1)-(x^2+1)

<=>(x^2+1)(x^3-1)

d)x^4-3x^3-x+3

<=>(x^4-3x^3)-(x-3)

<=>x^3(x-3)-(x_3)

<=>(x-3)(x^3-1)

4 tháng 8 2016

\(a,x^2.16-4xy+4y^2\)
\(=16.x^2-4xy+4y^2\)
\(=16.\left[x^2-4xy+\left(2y\right)^2\right]\)
\(=16.\left(x-2y\right)^2\)
\(b,x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^4+x^2\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
\(c,x^5+x^3-x^2-1\)
\(=x^3\left(x^2+1\right)-\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^3-1\right)\)
\(=\left(x^2+1\right)\left(x-1\right)\left(x^2+x+1\right)\)
\(d,x^4-3x^3-x+3\)
\(=x^3\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3-1\right)\)
\(=\left(x-3\right)\left(x-1\right)\left(x^2+x+1\right)\)

 

4 tháng 10 2016

k ) \(125x^3-1\)

     \(=\left(5x\right)^3-1\)

     \(=\left(5x-1\right)\left[\left(5x\right)^2+5x.1+1^2\right]\)

     \(=\left(5x-1\right)\left(25x^2+5x+1\right)\)

m ) \(x^6-y^3=\left(x^2\right)^3-y^3=\left(x^2-y\right).\left[\left(x^2\right)^2+x^2.y+y^2\right]=\left(x^2-y\right).\left(x^4+x^2y+y^2\right)\)

n ) \(a^4-2a^2+1\)

\(=\left(a^2\right)^2-2.a^2.1+1^2=\left(a^2-1\right)^2\)

i ) \(a^3+6a^2+12a+8\)

\(=\left(a+2\right)^3\)

4 tháng 10 2016

k) \(125x^3-1=\left(5x\right)^3-1=\left(5x-1\right)\left(25x^2+5x+1\right)\)

m) \(x^6-y^3=\left(x^2\right)^3-y^3=\left(x^2-y\right)\left(x^4+x^2y+y^2\right)\)

n) \(a^4-2a^2+1=\left(a^2-1\right)^2=\left(a^2-1\right)\left(a^2-1\right)=\left(a-1\right)\left(a+1\right)\left(a-1\right)\left(a+1\right)\)

i) \(a^3+6a^2+12a+8=\left(a+2\right)^2\)

18 tháng 8 2017

a)\(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(a-c\right)\)

b)\((a+b)(a^2-b^2)+(b+c)(b^2-c^2)+(c+a)(c^2-a^2)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

c)\(a^2b^2(a-b)+b^2c^2(b-c)+c^2a^2(c-a)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+bc+ca\right)\)

d)\(a^4(b-c)+b^4(c-a)+c^4(a-b)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)

8 tháng 9 2019

\(x^2-y^2+4x+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(4x^2-y^2+8\left(y-2\right)\)

\(=4x^2-\left(y^2-8y+16\right)\)

\(=4x^2-\left(y-4\right)^2\)

\(=\left(2x+y-4\right)\left(2x-y+4\right)\)

25 tháng 10 2018

1) a) \(x^3-2x^2y+xy^2-25x=x\left(x^2-2xy+y^2-25\right)\)

   \(=x\left[\left(x-y\right)^2-5^2\right]=x\left(x-y-5\right)\left(x-y+5\right)\)

b)\(x^2-y^2-2x-2y=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)=\left(x-1\right)^2-\left(y+1\right)^2\)

\(=\left(x-1-y-1\right)\left(x-y+y+1\right)=\left(x-y-2\right)\left(x+1\right)\)

25 tháng 10 2018

Câu c sửa mũ 2 thành mũ 4 giúp mk nhé

\(A=x^3+4x^2-8x-8=\left(x^3-8\right)+4x\left(x-2\right)=\left(x^3-2^3\right)+4x\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+4\right)+4x\left(x-2\right)=\left(x-2\right)\left(x^2+2x+4+4x\right)=\left(x-2\right)\left(x^2+6x+4\right)\)

\(B=a^2+b^2-a^2b^2+ab-a-b=\left(ab-a\right)-\left(a^2b^2-a^2\right)+\left(b^2-b\right)\)

\(=a\left(b-1\right)-a^2\left(b^2-1\right)+b\left(b-1\right)=a\left(b-1\right)-a^2\left(b-1\right)\left(b+1\right)+b\left(b-1\right)\)

\(=\left(b-1\right)\left(a-a^2b-a^2+b\right)\)

\(C=x^4-x^3-x+1=x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

1 tháng 8 2016

Đoàn Thị Huyền Đoan: Hình như câu A bạn chép xuống bị sai đề rồi!