K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

a) x\(^2\)+8x  +15 

=( x\(^2\)+3x) + ( 5x +15)

= x(x+3)+ 5 (x+3)

=(x+3) (x+5)

b)x\(^2\)-4x-12

=( x\(^2\)- 6x) +( 2x -12)

=x(x-6) + 2 (x-6)

=(x - 6) (x+2)

c)9x\(^2\)-6x-24

 =(9x\(^2\)-18x)+ (12x-24)

=9x(x-2) + 12 (x -2 )

=(x-2) (9x+12)

28 tháng 9 2017

a)  \(x^2+8x+15\)

\(=x^2+8x+16-1\)

\(=\left(x^2+8x+16\right)-1\)

\(=\left(x+4\right)^2-1\)

\(=\left(x+4-1\right)\left(x+4+1\right)\)

\(=\left(x+3\right)\left(x+5\right)\)

b) \(x^2-4x-12\)

\(=x^2-4x+4-16\)

\(=\left(x^2-4x+4\right)-4^2\)

\(=\left(x-2\right)^2-4^2\)

\(=\left(x-2-4\right)\left(x-2+4\right)\)

\(=\left(x-6\right)\left(x+2\right)\)

c) \(9x^2-6x-24\)

\(=9x^2-6x+1-25\)

\(=\left(9x^2-6x+1\right)-5^2\)

\(=\left(3x-1\right)^2-5^2\)

\(=\left(3x-1-5\right)\left(3x-1+5\right)\)

\(=\left(3x-6\right)\left(3x+4\right)\)

4 tháng 9 2017

a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24 
= (x+2)(x+5)(x+3)(x+4)-24 
= (x^2+7x+10)(x^2+7x+12)-24 
Đặt x^2+7x+11 = a thay vào A ta được : 
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2) 
Thế a vào (2) ta được : 
A=(x^2+7x+11-5)(x^2+7x+11+5) 
= (x^2+7x+6)(x^2+7x+16) 

b)  = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

   d)  2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)

Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1  nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)

Vậy 2x4 - 3x3 - 7x2 + 6x + 8  = (x-2)(x+1)(2x2-x-4)

4 tháng 9 2017

  a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

 \(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)

 \(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)

 \(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)

 \(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)

 \(=\left(x^2+x-1\right)^2-1=24\)

 \(=\left(x^2+x-1\right)^2=25\)

   xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé

10 tháng 10 2021

\(a)\) \(3x^2-6x=3x\left(x-2\right)\)

\(b)\) \(9x^3-9x^2y-4x+4y\)

\(=9x^2.\left(x-y\right)-4\left(x-y\right)\)

\(=\left(9x^2-4\right)\left(x-y\right)\)

\(=[\left(3x\right)^2-2^2]\left(x-y\right)\)

\(=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)

\(c)\) \(x^3-2x^2-8x\)

\(=x\left(x^2-2x-8\right)\)

\(=x\left(x+2\right)\left(x-4\right)\)

3 tháng 9 2018

Gợi ý:

a)  Đặt    \(t=x^2+x+1\)

b)  Đặt    \(t=x^2+8x+11\)

c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt:   \(t=x^2+7x+11\)

15 tháng 10 2020

Bài 1:

a) \(3x^2-9x=3x\left(x-3\right)\)

b) \(x^2-4x+4=\left(x-2\right)^2\)

c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\)

Bài 2: 

a) \(101^2-1=\left(101-1\right)\left(101+1\right)=102.100=10200\)

b) \(67^2+66.67+33^2=67^2+2.33.67+33^2\)

\(=\left(67+33\right)^2=100^2=10000\)

Bài 3:

\(x\left(x-3\right)+2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Vậy \(x=-2\)hoặc \(x=3\)

15 tháng 10 2020

B1:

a) \(3x^2-9x=3x.\left(x-3\right)\)

b) \(x^2-4x+4=\left(x-2\right)^2\)

c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+3+y\right).\left(x+3-y\right)\)

B2:

a) \(101^2-1=\left(101+1\right).\left(101-1\right)=102.100=10200\)

b) \(67^2+66.67+33^2=67^2+2.33.67+33^2=\left(67+33\right)^2=100^2=10000\)

B3:

\(x\left(x-3\right)+2\left(x-3\right)=0\)

\(\left(x-3\right).\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

24 tháng 3 2020

a, \(x^3-6x^2+9x\)

\(=x\left(x^2-6x+9\right)\)

\(=x \left(x-3\right)\)

Câu b, c cũng tượng tự nha bn , dễ mà 

#hoc_tot#

b) \(x^2-2xy+3x-6y=x\left(x-2y\right)+3\left(x-2y\right)=\left(x-2y\right)\left(x+3\right)\)

c)\(x^2-8x+7=x^2-x-7x+7=x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(x-7\right)\)

a)\(x^3-6x^2+9x=x\left(x^2-2\cdot x\cdot3+3^2\right)=x\left(x-3\right)^2\)

                                                                              ~ Chúc bạn học tốt ~