K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

http://olm.vn/hoi-dap/question/103082.html

19 tháng 6 2019

Ta có: (x - 2015)2 \(\ge\)\(\forall\)x => 8(x - 2015)2 \(\ge\)\(\forall\)x

                                               => 25 - y2 \(\ge\)

                                            <=> y2 \(\le\) 25

                                           <=> |y| \(\le\)5

Do y \(\in\)Z => 0 \(\le\)y < 5

+) Với y = 0 => 25 - 02 = 8(x - 2015)2

=> 25 = 8(x - 2015)2

=> (x - 2015)2 = 25 : 8 (ko thõa mãn vì (x - 2015)2 là số chính phương còn 25 : 8 ko phải là số chính phương)

+)Với y = 1 => 25 - 12 = 8.(x - 2015)2

=> 24 = 8.(x - 2015)2

=> (x - 2015)2 = 24 : 8 = 3 (ko thõa mãn)

+) Với y = 2 => 25 - 22 = 8(x - 2015)2

=> 21 = 8(x - 2015)2

=> (x - 2015)2 = 21 : 8 (ko thõa mãn)

+) Với y = 3 => 25 - 32 = 8(x - 2015)2

=> 16 = 8(x - 2015)2

=> (x - 2015)2 = 16 : 8 = 2 (ko thõa mãn)

+) Với y = 4 => 25 - 42 = 8(x - 2015)2

=> 9 = 8(x - 2015)2

=> (x - 2015)2 = 9 : 8 (ko thõa mãn)

+) Với y = 5 => 25 - 52 = 8(x - 2015)2

=> 0 = 8(x - 2015)2

=> (x - 2015)2 = 0

=> x - 2015 = 0

=> x = 2015

Vậy {x;y} thõa mãn là {2015; 5}

14 tháng 8 2020

a) \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)

\(=X^2y+x+xy^2-y-x^2y-xy^2\)

\(=x-y\)

14 tháng 8 2020

a, \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)

\(=x^2y+x+xy^2-y-x^2y-xy^2\)

\(=x-y\)

b, \(-x\left(x^2+x+1\right)+\frac{1}{2}x^2\left(2x-4\right)+x\left(x+1\right)-2\)

\(=-x^3-x^2-x+x^3-2x^2+x^2+x-2\)

\(=-2x^2-2\)

25 tháng 1 2017

b) 2016-1 = y-2015 - |y-2015|

2016x-1= y-2015-y-2015

2016x-1=0

2016= 1

suy ra x = 0

2 tháng 5 2017

a) x=0, y=5

21 tháng 10 2017

Sử dụng dãy tỉ số bằng nhau

21 tháng 10 2017

a/ Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\left(1\right)\\x^2+y^2=52\left(2\right)\end{cases}}\).

Từ (1) => \(\frac{x^2}{4}=\frac{y^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2+y^2}{4+25}=\frac{52}{29}\)

=> \(\frac{x}{2}=\frac{52}{29}\)=> x = \(\frac{2.52}{29}\approx4\)

=> \(\frac{y}{5}=\frac{52}{29}\)=> y = \(\frac{5.52}{29}\approx9\)

Vậy \(x\approx4\)và \(y\approx9\).

2 tháng 5 2017

a)x=0 , y=5

2 tháng 11 2017

a) Ta có :\(\left(x+2\right)^2\ge0;\left(y-4\right)^4\ge0;Với\forall x,y\in Z\)

\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^4=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)

Vậy để  (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3

b)Ta có :\(\left(x+y-11\right)^2\ge0;\left(x-y-4\right)^2\ge0;Với\forall x,y\in Z\)

\(\Rightarrow\orbr{\begin{cases}\left(x+y-11\right)^2=0\\\left(x-y-4\right)^2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x+y=11\\x-y=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\left(11+4\right):2=7,5\\y=\left(11-4\right):2=3,5\end{cases}}\)

Vậy để  (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5

a) Ta có :(x+2)2≥0;(y−4)4≥0;Với∀x,y∈Z

⇒[

(x+2)2=0
(y−3)4=0

⇒[

x+2=0
y−3=0

⇒[

x=−2
y=3

Vậy để  (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3

b)Ta có :(x+y−11)2≥0;(x−y−4)2≥0;Với∀x,y∈Z

⇒[

(x+y−11)2=0
(x−y−4)2=0

⇒[

x+y=11
x−y=4

⇒[

x=(11+4):2=7,5
y=(11−4):2=3,5

Vậy để  (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5