K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 10 2016
b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha
a) Ta có :\(\left(x+2\right)^2\ge0;\left(y-4\right)^4\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :\(\left(x+y-11\right)^2\ge0;\left(x-y-4\right)^2\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+y-11\right)^2=0\\\left(x-y-4\right)^2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+y=11\\x-y=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\left(11+4\right):2=7,5\\y=\left(11-4\right):2=3,5\end{cases}}\)
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5
a) Ta có :(x+2)2≥0;(y−4)4≥0;Với∀x,y∈Z
⇒[
⇒[
⇒[
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :(x+y−11)2≥0;(x−y−4)2≥0;Với∀x,y∈Z
⇒[
⇒[
⇒[
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5