Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk \(2x^4+x^3-4x^2+1\ge0\)
Phương trình \(\Leftrightarrow\hept{\begin{cases}6x^2-4\ge0\\\left(6x^2-4\right)^2=25\left(2x^4+x^3-4x^2+1\right)\end{cases}}\)
\(\Leftrightarrow36x^4-48x^2+16=50x^4+25x^3-100x^2+25\)với đk \(\orbr{\begin{cases}x\ge\sqrt{\frac{4}{6}}\\x\le-\sqrt{\frac{4}{6}}\end{cases}}\)
\(\Leftrightarrow-14x^4-25x^3+52x^2-9=0\)
\(\Leftrightarrow-\left(14x^4+42x^3\right)+\left(17x^3+51x^2\right)+\left(x^2+3x\right)-\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-14x^3+17x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)\left(-7x^2+5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\left(tm\right);x=\frac{1}{2}\left(l\right)\\-7x^2+5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{5-\sqrt{109}}{14}\left(l\right);x=\frac{5+\sqrt{109}}{14}\left(tm\right)\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=\frac{5+\sqrt{109}}{14}\end{cases}}}\)
Vậy \(x=-3\)hoặc \(x=\frac{5+\sqrt{109}}{14}\)
\(6x^2-4=5\sqrt{2x^4+x^3-4x^2+1}\)
\(pt\Leftrightarrow6x^2-54=5\sqrt{2x^4+x^3-4x^2+1}-50\)
\(\Leftrightarrow6\left(x^2-9\right)=5\cdot\frac{2x^4+x^3-4x^2+1-100}{\sqrt{2x^4+x^3-4x^2+1}+10}\)
\(\Leftrightarrow6\left(x-3\right)\left(x+3\right)=5\cdot\frac{2x^4+x^3-4x^2-99}{\sqrt{2x^4+x^3-4x^2+1}+10}\)
\(\Leftrightarrow6\left(x-3\right)\left(x+3\right)-5\cdot\frac{\left(x+3\right)\left(2x^3-5x^2+11x-33\right)}{\sqrt{2x^4+x^3-4x^2+1}+10}=0\)
\(\Leftrightarrow\left(x+3\right)\left(6\left(x-3\right)-\frac{5\left(2x^3-5x^2+11x-33\right)}{\sqrt{2x^4+x^3-4x^2+1}+10}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\\frac{\sqrt{109}+5}{14}\end{cases}}\)
Câu a thì mình chịu rồi @@ sorry nha
Còn câu b, bạn thấy rằng x2-3x+2-x2+x+1+2x-3=0 đúng không nào?
Nếu như bạn còn nhớ công thức a+b+c=0 <=> a3+b3+c3=3abc
Thì chắc chắn là bạn sẽ giải ra được bài này thôi. Đáp số là x=1 hoặc x=2 hoặc x=3/2 bạn nhé.
Chúc bạn giải được câu b này. Nếu như vẫn còn thắc mắc thì trả lời lại cho mình để mình gừi bài giải chi tiết nhé, do giờ mình đang bận @@
Đặt \(x^{243}+x^{81}+x^{27}+x^9+x^3+x=\left(x^2-1\right)k+r=\left(x-1\right)\left(x+1\right)k+r\)
Nên r là số dư ; Thay x = 1 ta được :
\(1^{243}+1^{81}+1^{27}+1^9+1^3+1=\left(1-1\right)\left(1+1\right)k+r\)
\(\Leftrightarrow6=0.2.k+r\Leftrightarrow r=6\)
Vậy số dư là 6
đầu tiên tính pen -ta >0 r suy ra điều kiện
phần tính \(x^3+x_2^3=1\)theo hằng đẳng thức.r bạn sẽ ra thôi. cố lên
\(x_1^3+x_2^3=\left(x1+x2\right)\left(\left(x1+x2\right)^2-3xy\right)\)
Bạn thay x1.x2 và x1+x2 theo m vào là tìm đc m
~ Có thể mai sau tôi sẽ ko giàu có, ko mồm mép nhưng tôi sẽ cố gắng hết sức để có đc những thứ đó.~
Chung quy lại là CHÁN