K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2016

M=x2-2.x.1/2+(1/2)2-(1/2)2 +y2-2.y.3+32-32+10

M=(x-1/2)2-1/4+(y-3)2-9+10

M=(x-1/2)+(y-3)2+3/4 luon >=3/4

Vậy: GTNN cua M la 3/4 khi x=1/2 và y=3

17 tháng 7 2016

\(Q=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Vậy Min Q=9/2 <=> x=3/2

b) \(M=x^2-x+\frac{1}{4}+y^2+6y+9+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy Min M=3/4 <=> x=1/2

30 tháng 8 2017

Ta có : 2x2 - 6x 

\(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.6+36-36\)

Q\(=\left(\sqrt{2}x-6\right)^2-36\)

Vì \(\left(\sqrt{2}x-6\right)^2\ge0\forall x\)

Nên : Q = \(=\left(\sqrt{2}x-6\right)^2-36\) \(\ge-36\forall x\)

Vậy \(Q_{min}=-36\) khi \(\sqrt{2}x-6=0\) => \(\sqrt{2}x=6\) => \(x=6:\sqrt{2}=3\sqrt{2}\)

11 tháng 9 2020

Câu 1.

P = x2 - 2x + 5 

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinP = 4 <=> x = 1

Q = 2x2 - 6x

= 2( x2 - 3x + 9/4 ) - 9/2

= 2( x - 3/2 )2 - 9/2 ≥ -9/2 ∀ x

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinQ = -9/2 <=> x = 3/2

M = x2 + y2 - x + 6y + 10

= ( x2 - x + 1/4 ) + ( y2 + 6y + 9 ) + 3/4

= ( x - 1/2 )2 + ( y + 3 )2 + 3/4 ≥ 3/4 ∀ x

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

=> MinM = 3/4 <=> x = 1/2 ; y = -3

Câu 2.

A = 4x - x2 + 3

= -( x2 - 4x + 4 ) + 7

= -( x - 2 )2 + 7 ≤ 7 ∀ x

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxA = 7 <=> x = 2

B = x - x2

= -( x2 - x + 1/4 ) + 1/4

= -( x - 1/2 )2 + 1/4 ≤ 1/4 ∀ x

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> MaxB = 1/4 <=> x = 1/2

N = 2x - 2x2

= -2( x2 - x + 1/4 ) + 1/2

= -2( x - 1/2 )2 + 1/2 ≤ 1/2 ∀ x

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> MaxB = 1/2 <=> x = 1/2

11 tháng 9 2020

Làm gần xong thì lỡ bấm out ra TT

\(P=x^2-2x+5=\left(x-1\right)^2+4\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy minP = 4 <=> x = 1

\(Q=2x^2-6x=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x=\frac{3}{2}\)

Vậy minQ = - 9/2 <=> x = 3/2

\(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

Vậy minM = 3/4 <=> x = 1/2 và y = - 3

2 tháng 7 2016

\(Q=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu "=" xảy ra \(< =>\left(x-\frac{3}{2}\right)^2=0< =>x=\frac{3}{2}\)

Vậy MInQ=-9/2 khi x=3/2

\(M=x^2+y^2-x+6y+10=x^2+y^2-x+6y+1+9=\left(x^2-x+1\right)+\left(y^2+6y+9\right)\)

\(=\left[\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\right]+\left(y^2+2.y.3+9\right)=\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]+\left(y+3\right)^2=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(< =>\left(x-\frac{1}{2}\right)^2=0=>x=\frac{1}{2}\)

  và \(\left(y+3\right)^2=0=>y=-3\)

Vậy minM=3/4 khi x=1/2 và y=-3

2 tháng 7 2016

Tìm giá trị nhỏ nhất nhé

10 tháng 8 2016

a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4 
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4 
Vay gia tri nho nhat P=4 khi x=1 
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4] 
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2 
Vay gia tri nho nhat Q= -9/2 khi x= 3/2 
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4 
= ( x-1/2)^2 + (y+3)^2 +3/4 
M>= 3/4 
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3 

10 tháng 8 2016

P=x2-2x+1+4

=(x-1)2+4

vì (x-1)2 >= 0 với mọi x nên (x-1)2+4 lớn hơn hoặc = 4 

dấu = xảy ra khi (x-1)2=0 <=>x=1

vậy gtnn của P=4 khi x=1

22 tháng 6 2019

a) Ta có: Q = 2x2 - 6x = 2x2 - 6x + 9/2 - 9/2 = 2(x2 - 3x + 9/4) - 9/2 = 2(x - 3/2)2 - 9/2

Ta luôn có : (x - 3/2)2 \(\ge\)\(\forall\)x --> 2(x - 3/2)2 \(\ge\)\(\forall\)x

     => 2(x - 3/2)2 - 9/2 \(\ge\)-9/2 \(\forall\)x

hay Q \(\ge\)-9/2 \(\forall\)x

Dấu "=" xảy ra <=> (x - 3/2)2 = 0 <=> x - 3/2 = 0 <=> x = 3/2

Vậy Qmin = -9/2 tại x = 3/2

22 tháng 6 2019

b) Ta có:

M = x2 + y2 - x + 6y + 10 = (x2 - x + 1/4) + (y2 + 6y + 9) + 3/4 = (x - 1/2)2 + (y + 3)2 + 3/4

Ta luôn có: (x - 1/2)2 \(\ge\)\(\forall\)x

                (y + 3)2 \(\ge\) 0 \(\forall\)y

 => (x - 1/2)2 + (y + 3)2 + 3/4 \(\ge\) 3/4 \(\forall\)x,y 

hay M \(\ge\)3/4 \(\forall\)x , y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

Vậy Mmin = 3/4 tại x = 1/2 và y = -3

bạn cứ áp dụng công thức này vào rồi làm nhé!

\(ax^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2+\dfrac{4ac-b^2}{4a}\)

a dương thì bt có GTNN tại \(x=-\dfrac{b}{2a}\)

a âm thì bt có GTLN tại \(x=-\dfrac{b}{2a}\)

ví dụ câu a nhé:

\(a.\: A=2x^2-6x=2\left(x+\dfrac{-6}{2.2}\right)^2+\dfrac{4.2.0-\left(-6\right)^2}{4.2}\ge\dfrac{4.2.0-\left(-6\right)^2}{4.2}=-\dfrac{9}{2}\)

dấu "=" xảy ra khi \(x=\dfrac{3}{2}\)

vậy GTNN của A =\(-\dfrac{9}{2}\) tại \(x=\dfrac{3}{2}\)

\(b.\:B=x^2+y^2-x+6y+10\\ B=x^2-x+\dfrac{1}{4}+y^2+6y+9+\dfrac{3}{4}\\ B=\left(x+\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

vậy GTNN của B là \(\dfrac{3}{4}\) tại \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

6 tháng 7 2017

Câu 1:

b, \(Q=x^2+y^2-x+6y+10\)

\(Q=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)

\(Q=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của x;y ta có:

\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Hay \(Q\ge\dfrac{3}{4}\) với mọi giá trị của x;y

Để \(Q=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy..............

Câu a;c tách như câu b,

Câu 2:

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2x-2x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

Với mọi giá trị của x ta có:

\(\left(x-2\right)^2-7\ge-7\)

\(-\left[\left(x-2\right)^2-7\right]\ge7\)

Hay \(A=7\) với mọi giá trị của x

Để \(A=7\) thì \(-\left[\left(x-2\right)^2-7\right]=7\)

\(\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy..............

b,c làm tương tự

Chúc bạn học tốt!!!

6 tháng 7 2017

a minh biet r

con b thi ko

9 tháng 7 2016

a) P= x2 -2x +1 +4 = (x-1)2 +4 

Ta có: (x-1)2>= 0

\(\Rightarrow\) (x-1)2 +4 >= 4

GTNN của P=4 khi x= 1

c) M= (x2-x+1/4)+(y2+6y+9)+3/4   =   (x-1/2)2 + (y+3)+3/4

Ta có: (x-1/2)2 + (y+3) >= 0

\(\Rightarrow\) (x-1/2)2 + (y+3)+3/4 >= 3/4

GTNN của Q=3/4  khi x=1/2         ;    y=-3

 

b) Q= 2(x2-3x)  =  2(x2-3x+9/4)-9/2 =  2.(x-3/2)2-9/2

ta có 2.(x-3/2)2 >=0

\(\Rightarrow\) 2.(x-3/2)2-9/2>= -9/2

GTNN của Q=-9/2 khi x=3/2

9 tháng 7 2016

1 like cho mình nếu đúng nhé

haha