K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

\(Q=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu "=" xảy ra \(< =>\left(x-\frac{3}{2}\right)^2=0< =>x=\frac{3}{2}\)

Vậy MInQ=-9/2 khi x=3/2

\(M=x^2+y^2-x+6y+10=x^2+y^2-x+6y+1+9=\left(x^2-x+1\right)+\left(y^2+6y+9\right)\)

\(=\left[\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\right]+\left(y^2+2.y.3+9\right)=\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]+\left(y+3\right)^2=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(< =>\left(x-\frac{1}{2}\right)^2=0=>x=\frac{1}{2}\)

  và \(\left(y+3\right)^2=0=>y=-3\)

Vậy minM=3/4 khi x=1/2 và y=-3

2 tháng 7 2016

Tìm giá trị nhỏ nhất nhé

16 tháng 8 2018

\(2D=x^2-4xy+4y^2+x^2-12x+36+6y^2-36y+54+10\)\(2D=\left(x-2y\right)^2+\left(x-6\right)^2+6\left(y-3\right)^2+10\)

\(2D\ge10\) => D>=5 khi x=2y=6

\(F=3x^2+x+4=3\left(x^2+\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{47}{12}\)

F=\(3\left(x+\dfrac{1}{6}\right)^2+\dfrac{47}{12}\ge\dfrac{47}{12}\) khi x=-1/6

\(2E=4x^2-4xy+y^2+y^2-4y+4+3996\)

\(2E=\left(2x-y\right)^2+\left(y-2\right)^2+3996\ge3996\)

E>=1998 khi 2x=y=2

bài 4;

\(B=-3x^2+x=-3\left(x^2-\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{1}{12}\)

\(B=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)

khi x=1/6

bài 5:

\(a,\left(x+2\right)^2=0=>x=-2\)

\(b,\left(x-6\right)^2+\left(y+1\right)^2=0\rightarrow\left\{{}\begin{matrix}x=6\\y=-1\end{matrix}\right.\)

c,\(x^2+2y^2-2xy-2x+2=0\)

\(x^2-4xy+4y^2+x^2-4x+4=0\)

\(\left(x-2y\right)^2+\left(x-2\right)^2=0\rightarrow\left\{{}\begin{matrix}x=2y\\x=2\end{matrix}\right.\)

đây nhá bạn, khá tốn time của mình huhu

22 tháng 5 2016

M=x2-2.x.1/2+(1/2)2-(1/2)2 +y2-2.y.3+32-32+10

M=(x-1/2)2-1/4+(y-3)2-9+10

M=(x-1/2)+(y-3)2+3/4 luon >=3/4

Vậy: GTNN cua M la 3/4 khi x=1/2 và y=3

20 tháng 8 2018

bài 5 :

+) ta có : \(A=x^2-4x+18=x^2-4x+4+14\)

\(=\left(x-2\right)^2+14\ge14>0\forall x\Rightarrow\left(đpcm\right)\)

+) ta có : \(B=x^2-x+2=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\forall x\Rightarrow\left(đpcm\right)\)

+) ta có : \(C=x^2+2y^2-2xy-2y+15=x^2-2xy+y^2+y^2-2y+1+14\)

\(=\left(x-y\right)^2+\left(y-1\right)^2+14\ge14>0\forall x\Rightarrow\left(đpcm\right)\)

bài 6 :

+) ta có : \(M=x^2-10x+3=x^2-10x+25-22=\left(x-5\right)^2-22\ge-22\)

\(\Rightarrow M_{min}=-22\) khi \(x=5\)

+) ta có : \(N=x^2+6x-5=x^2+6x+9-14=\left(x+3\right)^2-14\ge-14\)

\(\Rightarrow N_{min}=-14\) khi \(x=-3\)

+) ta có : \(P=x^2+y^2-4x+20=x^2-4x+4+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)

\(\Rightarrow P_{min}=16\) khi \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

+) ta có : \(Q=x\left(x-3\right)=x^2-3x=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge\dfrac{-9}{4}\)

\(\Rightarrow Q_{min}=\dfrac{-9}{4}\) khi \(x=\dfrac{3}{2}\)

bài 7 :

+) ta có : \(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)

\(\Rightarrow A_{max}=39\) khi \(x=-6\)

+) ta có : \(B=-4x^2+4x+7=-\left(x^2-4x+4\right)+11=-\left(x-2\right)^2+11\le11\)

\(\Rightarrow B_{max}=11\) khi \(x=2\)

bài 8 :

a) ta có : \(16x^2-9=0\Leftrightarrow x^2=\dfrac{9}{16}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\)

b) ta có : \(\left(x-2\right)^2-x^2=4\Leftrightarrow x^2-4x+4-x^2-4=0\Leftrightarrow x=0\)

c) ta có : \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow2x+255=0\Leftrightarrow x=\dfrac{-255}{2}\)

d) ta có : \(\left(2x-3\right)^2-\left(2x+1\right)\left(2x-1\right)=16\)

\(\Leftrightarrow4x^2-12x+9-4x^2+1-16=0\Leftrightarrow-12x-6=0\Leftrightarrow x=\dfrac{-1}{2}\)

e) ta có : \(\left(x-2\right)\left(x+2\right)-x\left(x-2\right)=1\)

\(\Leftrightarrow x^2-4-x^2+2x-1=0\Leftrightarrow x=\dfrac{5}{2}\)

22 tháng 8 2018

thank you bạn nha

19 tháng 6 2016

a) \(Q=2\left(x^2-3x\right)\)

\(Q=2\left(x^2-2\times x\times\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu bằng <=> \(x=\frac{3}{2}\)

10 tháng 8 2016

a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4 
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4 
Vay gia tri nho nhat P=4 khi x=1 
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4] 
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2 
Vay gia tri nho nhat Q= -9/2 khi x= 3/2 
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4 
= ( x-1/2)^2 + (y+3)^2 +3/4 
M>= 3/4 
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3 

10 tháng 8 2016

P=x2-2x+1+4

=(x-1)2+4

vì (x-1)2 >= 0 với mọi x nên (x-1)2+4 lớn hơn hoặc = 4 

dấu = xảy ra khi (x-1)2=0 <=>x=1

vậy gtnn của P=4 khi x=1

14 tháng 7 2018

\(a,\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow x-3=\pm2\)

\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)

Vậy \(x=5\)hoặc \(x=1\)

\(b,x^2-2x=24\)

\(\Leftrightarrow x^2-2x+1-1=24\)

\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)

\(\Leftrightarrow x-1=\pm5\)

\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)

Vậy \(x=6\) hoặc \(x=-4\)

14 tháng 7 2018

\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow10x+255=0\)

\(\Leftrightarrow10x=-255\)

\(\Leftrightarrow x=\frac{-51}{2}\)

\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x-27=1\)

\(\Leftrightarrow4x=28\)

\(\Leftrightarrow x=7\)

28 tháng 8 2020

Ít thôi -..-

a) ( 3x + 2 )( 2x + 9 )  - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )

<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )

<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4

<=> 12x + 15 = 2x + 5

<=> 12x - 2x = 5 - 15

<=> 10x = -10

<=> x = -1

b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )

<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20

<=> 3x2 - 12x - 2 = 3x2 - 17x + 20

<=> 3x2 - 12x - 3x2 + 17x = 20 + 2

<=> 5x = 22

<=> x = 22/5

c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8

<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8

<=>  x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

<=> 12x + 16 = -8

<=> 12x = -24

<=> x = -2

d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16

<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16

<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16

<=> 8x2 - 9x - 4 = 16

<=> 8x2 - 9x - 4 - 16 = 0

<=> 8x2 - 9x - 20 = 0

( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm

                                                         2 là nghiệm vô tỉ =) )

28 tháng 8 2020

a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)

=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)

=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4

=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)

=> 12x + 15 = 2x + 5

=> 12x + 15  - 2x - 5 = 0

=> 10x + 10 = 0

=> 10x = -10 => x = -1

b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)

=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)

=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20

=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20

=> 3x2 - 12x - 2 = 3x2 - 17x + 20

=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0

=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0

=> 5x - 22 = 0

=> 5x = 22 => x = 22/5

c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8

=> x3 + 6x2 + 12x + 8 - (x3  - 6x2 + 12x - 8) - 12x2 + 12x = -8

=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8

=> 12x + 16 = -8

=> 12x = -24

=> x = -2

Còn bài cuối làm nốt