K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2016

Ta có:

\(3^{n+2}+3^n-2^{n+2}-2^n\)

\(3^n.3^2+3^n-2^n.2^2-2^n\)

\(3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(3^n.10-2^n.5\)

\(3^n.10-2^{n-1}.10\) = \(\left(3^n-2^{n-1}\right).10\)   => chia hết cho 10

Nhớ cho mk nha bạn !

11 tháng 2 2016

Ta có 3^n+2+3^n-2^n+2-2^n

=3^n+2+3^n-(2^n+2+2^n)

=3^n.(3^2+1)-2^n.(2^2+1)

=3^n.10-2^n.10

=3^n.10-2^(n-1).10=10.(3^n-2^(n-1)) chia hết cho 10(đpcm)

27 tháng 6 2016

a) \(3^{n+2}+3^n-2^{n+2}-2^n\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10

b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}.10+2^{n+2}.3\)

\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6

27 tháng 6 2016

mình k cho bạn rùi đấy Thảo Lê Thị

25 tháng 6 2017

2n+3+3n+1+2n+3+2n+2

=2n.23+3n.3+2n.23+2n.22

=2n(23+23)+3n.3+2n.22

=2n.24+3n.3+2n.22

=2n(24+22)+3n.3

=2n.20+3n.3

25 tháng 6 2017

bạn chép sai đề rùi

3n+1 phải là 2n+1

26 tháng 8 2020

Đáp án:

Giải thích các bước giải:

3^(n+2)-2^(n+2)+3^n-2^n

=3^n.9+3^n-2^n.4-2^n

=3^n(9+1)-2^n(4+1)

=3^n.10-2^n.5

=3^n.10-2^(n-1).10

=10(3^n-2^(n-1))

26 tháng 8 2020

Bài làm:

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

=> đpcm

19 tháng 10 2015

Ta có:3n+2-2n+2+3n -2n=3n.9-2n-1.8+3n-2n-1.2=3n.(9+1)-2n-1.(8+2)=3n.10-2n.10

=(3n-2n).10 chia hết cho 10

=>3n+2-2n+2+3n -2n chia hết cho 10

9 tháng 7 2015

a)\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14\)

suy ra 8^7-2^18 chia hết cho 14

9 tháng 7 2015

a) 8^7 = (2^3)^7 = 2^21

Vậy 8^7-2^18 = 2^21 - 2^18 = 2^18(2^3-1)= 2^18 x 7 chia hết cho 7 (ĐPM)

b) 5^5 - 5^4 + 5^3 = 5^3(5^2-5+1) = 5^3 x 21 = 5^3 x 3 x 7 chia hết cho 7 (ĐPCM)

c) 7^6 + 7^5 - 7^4 = 7^4 x ( 7^2+7-1) = 7^4 x 55 = 7^4 x 5 x 11 chia hết cho 11 (ĐPCM)

d) Ta có: 24^54 = 8^54 x 3^54 = (2^3)^54 x 3^54 = 2^162 x 3^54

72^63 = 8^63 x 9^63 = (2^3)^63 x (3^2)^63 = 2^189 x 3^126

Vậy 24^54 x 5^24 x 2^10 = 5^24 x 2^10 x 2^162 x 3^54 = 2^172 x 3^54 x 5^24

Rõ ràng  2^172 x 3^54 x 5^24 không chia hết cho 2^189 x 3^126 nên 24^54 x 5^24 x 2^10 không chia hết cho 72^63 (bài này mình thấy lạ, nếu sai ở đâu các bạn chỉ ra nha)

e) \(3^{n+2}-2^{n+2}+3^n+2^n=3^n.9-2^n.4+3^n+2^n=3^n\left(9+1\right)-2^n\left(4-1\right)=10.3^n-2^n.3\)

Rõ ràng 10.3^n - 2^n.3 không chia hết cho 10 (bạn ấn máy tính thử, mình gặp bài này rồi, chắc đề sai)

 

19 tháng 7 2017

3n + 3 + 3n + 1 + 2n + 3 + 2n + 2

= 3n.33 + 3n.3 + 2n.23 + 2n.22

= 3n.(27 + 3) + 2n.(8 + 4)

= 3n.30 + 2n.12

= 3n.5.6 + 2n.2.6

= 6.(3n.5 + 2n.2)  \(⋮\)  6

19 tháng 7 2017

Cảm ơn bạn kayasari nhiều nha !

5 tháng 6 2016

3)

a)\(\frac{4n+5}{n}=4+\frac{5}{n}\)nguyen nen n\(\in\)U(5)=\(\left\{1,5\right\}\)vi n thuoc N

b)\(\frac{n+5}{n+1}=1+\frac{4}{n+1}\)nguyen nen (n+1)\(\in U\left(4\right)=\left\{1,2,4\right\}\)vi n+1>-1

=> n\(\in\left\{0,1,3\right\}\)

5 tháng 6 2016

Bài 1:

a)[(2x-13):7].4 = 12

Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau

\(\Leftrightarrow\frac{8x-52}{7}=\frac{12}{1}\Rightarrow\left(8x-52\right)1=7.12\)

Chia cả hai vế cho 4 ta đc:

\(\frac{8x-52}{4}=\frac{7.12}{4}\)

\(\Leftrightarrow2x-13=21\)

\(\Leftrightarrow2x=34\)

\(\Leftrightarrow x=17\)

b.1270:[115 - (x-3)] = 254

\(\Leftrightarrow\frac{1270}{118-x}=254\)

\(\Leftrightarrow-\frac{254\left(x-113\right)}{x-118}=0\)

\(\Leftrightarrow-254\left(x-113\right)=0\)

\(\Leftrightarrow x-113=0\)

\(\Leftrightarrow x=113\)

Bài 2:(mk ngu toán CM)

Bài 3:

a)\(\frac{4n+5}{n}=\frac{4n}{n}+\frac{5}{n}=4+\frac{5}{n}\in Z\)

=>5 chia hết n

=>n thuộc Ư(5)

=>n thuộc {1;5) Vì n thuộc N

b)(n+5) chia hết cho (n+1)

=>n+1+4 chia hết n+1

=>4 chia hết n+1

=>n+1 thuộc Ư(4)

=>n+1 thuộc {1;2;4} Vì n thuộc N

=>n thuộc {0;1;3}

4 tháng 9 2017

1a, Ta có : 2S=2+2^2+2^3+...+2^51

=>2S- S=(2+2^2+2^3+...+2^51)-(1+2+2^2+...+2^50)

=> S = 2^51-1

Vậy S < 2^51

1,b 24^54.54^24.2^10 chia hết 72^63 

24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24... 

=(2^3)^54.3^54.(3^3)^24.2^24.2^10 

= 2^162.2^24.2^10.3^54.3^72 

=2^196.3^126 

72^63=(2^3.3^2)^63 

=(2^3)^63(.3^2)^63=2^189.3^126 

vì 2^196.3^126 chia hết 2^189.3^126 

=>24^54.54^24.2^10 chia hết 72^63 

Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n

= 3^(n+2) + 3^n - [2^(n+2) + 2^n] 


Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)

 
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 

Suy ra S chia hết cho 10.

2 Ta có M =|x-2002|+|x-2001| => M ≥ | x-2002+x-2001|

=> M ≥ | 2x-4003 | va | 2x-4003 | ≥ 0

Có 2 truong hop 2x ≤ 4003 va 2x ≥ 4003

Th1 : 2x ≤ 4003

=> M ≥ 4003-2x ≥ 0

Để m nho nhat thi 2x phai lon nhat 

=> 2x=4003=>x=\(\frac{4003}{2}\)

M ≥ 4003-4003=0                  

Th2 2x ≥ 4003

M ≥ 2x-4003 ≥0

Để M nho nhat thi 2x phai nho nhat

=> 2x=4003=>x=4003/2

M ≥ 4003 -4003=0

Tu 2 truong hop tren ta co GTNN cua M la 0

Xay ra khi x=4003/2

4 tháng 9 2017

Để M đạt GTNN thì:

|x-2002|+|x-2001|> hoặc = 0

Vì |x-2002|> hoặc = 0

|x-2001|> hoặc = 0

Nếu |x-2002|=0

=>x-2002=0

x=2002+0

x=2002

Thay x=2002 ta có:

|2002-2002|+|2002-2001|

=|0|+|1|

=0+1

=1

=> GTNN của M=1