Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^4+a^3+a+1\)
\(=\left(a^4+a^3\right)+\left(a+1\right)\)
\(=a^3\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^3+1\right)\)
\(=\left(a+1\right)^2\left(a^2-a+1\right)\)
\(=\left(a+1\right)^2\left[\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\right]\) \(\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=-1\)
Mình học lớp 7 nên chỉ làm được phần b, thôi
b, * Nếu x=1 thì:
1+1=2
* Nếu x=2 thì:
2+ 1/2 >2
* Nếu x>2
=> x + 1/x > 2 ( vì 1/x là số dương )
Vậy x + 1/x >=2 (x>0)
Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html
Ta có (a - b)2 >=0
=) a2 + b2 >= 2ab
Cộng 2 vế BĐT cho a2 + b2 ta được
a2 + b2 + a2 + b2 >= a2 + b2 +2ab
2( a2 + b2 ) >= ( a + b )2
2( a2 + b2 ) >= 1
a2 + b2 >= 1/2
Dấu '=' XRK : a=b
a)Áp dụng BĐT bunhiacoxki ta có: \(\left(a^2+b^2\right)\left(1^2+1^2\right)\ge\left(a.1+b.1\right)^2=\left(a+b\right)^2=3^2=9\)
=>\(2\left(a^2+b^2\right)\ge9\Leftrightarrow a^2+b^2\ge\frac{9}{2}\)
Dấu "=" xảy ra khi: a=b
Vậy GTNN của N là 9/2 tại a=b
b)Ta có: \(a^2+b^2\ge\frac{9}{2}\) (câu a)
<=>(a+b)2-2ab\(\ge\frac{9}{2}\)
<=>\(9-2ab\ge\frac{9}{2}\)
<=>\(2ab\le\frac{9}{2}\)
<=>\(ab\ge\frac{9}{4}\)
<=>\(ab+2\le\frac{17}{4}\)
Dấu "=" xảy ra khi a=b
Vậy GTLN của P là 17/4 tại a=b
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0
\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)
\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)
vì a;b;c >0\(\Rightarrow P=\left(a+1\right)\left(b+1\right)\left(c+1\right)>=2\sqrt{a}2\sqrt{b}2\sqrt{c}=8\cdot\sqrt{abc}=8\cdot1=8\)(bđt cosi)
dấu = xảy ra khi \(a=b=c=1\)
vậy min của P là 8 khi a=b=c=1
Bạn có thể tham khảo tại:
https://olm.vn/hoi-dap/question/922685.html
Chúc bạn học giỏi
\(a^4+a^3+a+1=0haya^4+a^3+a+1\ge0\)
\(a^4+a^3+a+1=\left(a+1\right)\left(a^3+1\right)=\left(a+1\right)^2\left(a^2-a+1\right)=\left(a+1\right)^2\left(\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\right)\)
ta có : \(\left(a+1\right)^2\ge0\forall a\);\(\left(\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\right)>0\forall a\)