Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(ab+bc+ac=2014\) nên từ giả thiết tương đương :
\(\frac{a^2+ab+bc+ac}{a+b}+\frac{b^2+ab+bc+ca}{b+c}+\frac{c^2+ab+bc+ca}{c+a}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{\left(a+b\right)}+\frac{\left(b+c\right)\left(b+a\right)}{a+b}+\frac{\left(c+a\right)\left(c+b\right)}{c+a}\)
\(=a+c+b+a+c+b=2\left(a+b+c\right)\) (đpcm )
Ta có:
\(\left(b_1+b_2+...+b_{2014}\right)^3=\left(b_1^3+b_2^3+...+b_{2014}^3\right)+3B⋮3\)
\(\Rightarrow A⋮3\)
a^2014+b^2014+c^2014=a^2015+b^2015+c^2015=1
<=> (a^2014-a^2015)+(b^2014-b^2015)+(c^2014-c^2015)=0
suy ra \(\hept{\begin{cases}a^{2014}=a^{2015}\\b^{2014}=b^{2015}\\c^{2014}=c^{2015}\end{cases}}\)
<=> \(\hept{\begin{cases}\orbr{\begin{cases}a=1\\a=0\end{cases}}\\\orbr{\begin{cases}b=1\\b=0\end{cases}}\\\orbr{\begin{cases}c=1\\c=0\end{cases}}\end{cases}}\)
<=> a=1 hoặc a=0; b=1 or b=0; c=1;c=0 mà a^2014+b^2014+c^2014=1
suy ra a,b,c có 2 trong 3 số bằng 0 và 1 số bằng 1
P=1
Lời giải:
Áp dụng BĐT AM-GM:
\(a^{2014}+\underbrace{1+1+....+1}_{1006}\geq 1007\sqrt[1007]{a^{2014}}=1007a^2\)
\(\Leftrightarrow a^{2014}+1006\geq 1007a^2\)
\(\Rightarrow a^{2014}+2013\geq 1007(a^2+1)\)
\(\Rightarrow \frac{a^{2014}+2013}{b^2+1}\geq \frac{1007(a^2+1)}{b^2+1}\). Hoàn toàn TT với các phân thức còn lại và cộng theo vế:
\(A\geq 1007\left(\frac{a^2+1}{b^2+1}+\frac{b^2+1}{c^2+1}+\frac{c^2+1}{a^2+1}\right)\)
\(\geq 1007.3\sqrt[3]{\frac{(a^2+1)(b^2+1)(c^2+1)}{(b^2+1)(c^2+1)(a^2+1)}}=3021\) (theo AM-GM)
Vậy \(A_{\min}=3021\Leftrightarrow a=b=c=1\)
Lời giải:
Đặt $(a^{1007}, b^{1007}, c^{1007})=(x,y,z)$
Khi đó, ĐKĐB tương đương với:
$x^2+y^2+z^2=xy+yz+xz$
$\Leftrightarrow 2x^2+2y^2+2z^2=2xy+2yz+2xz$
$\Leftrightarrow (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)=0$
$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0$
Ta thấy $(x-y)^2, (y-z)^2, (z-x)^2\geq 0$ với mọi $x,y,z$
Do đó để tổng của chúng bằng $0$ thì $(x-y)^2=(y-z)^2=(z-x)^2=0$
$\Rightarrow x=y=z$
$\Leftrightarrow a^{1007}=b^{1007}=c^{1007}$
$\Leftrightarrow a=b=c$
Khi đó:
$A=0^{2014}+0^{2015}+0^{2016}=0$
Gửi lại nha, bài cũ bị sai mấy chỗ:
Ta có: a2 + b2 = c2 + d2
=>a2-c2=d2-b2
=>(a-c)(a+c)=(d-b)(d+b) (1)
Lại có: a + b = c + d
=>a-c=d-b
Nếu a=c => b=d hiển nhiên biểu thức:
a2014 + b2014 = c2014 + d2014 đúng.
Nếu ac> => b>d
=>a-c=d-b >0
Khi đó biểu thức (1) trở thành:
a+c=b+d (a-c, d-b khác 0 nên ta có thể đơn giản)
mà: a + b = c + d
cộng hai biểu thức theo vế ta được:
2a+b+c=b+c+2d
=>2a=2d
=>a=d
=>b=c
Vì a=d và b=c nên biểu thức a2014 + b2014 = c2014 + d2014 đúng.
khó quá!