K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>-m=4

hay m=-4

b: PTHĐGĐ là:

\(\dfrac{1}{2}x^2-2x+m-1=0\)

\(\Leftrightarrow x^2-4x+2m-2=0\)

\(\text{Δ}=\left(-4\right)^2-4\left(2m-2\right)\)

\(=16-8m+8=-8m+24\)

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

hay m<3

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m-2\end{matrix}\right.\)

Theo đề, ta có: \(x_1\cdot x_2\left(x_1^2+x_2^2\right)=-48\)

=>\(\Leftrightarrow\left(2m-2\right)\cdot\left[4^2-2\left(2m-2\right)\right]=-48\)

\(\Leftrightarrow\left(m-1\right)\left(16-4m+4\right)=-24\)

\(\Leftrightarrow\left(m-1\right)\left(-4m+20\right)=-24\)

\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=6\)

\(\Leftrightarrow m^2-6m-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\left(loại\right)\\m=3-\sqrt{10}\left(nhận\right)\end{matrix}\right.\)

Để (Pm) là đồ thị của hàm số bậc hai thì m-1<>0

hay m<>1

Phương trình hoành độ giao điểm là:

\(\left(m-1\right)x^2+\left(2m-4\right)x-5-4x+m=0\)

\(\Leftrightarrow\left(m-1\right)x^2+\left(2m-8\right)x+m-5=0\)

\(\text{Δ}=\left(2m-8\right)^2-4\left(m^2-6m+5\right)\)

\(=4m^2-32m+64-4m^2+24m-20\)

\(=-8m+44\)

Để phương trình có hai nghiệm phân biệt thì -8m+44>0

=>-8m>-44

hay m<11/2

Theo đề, ta có: \(\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\dfrac{\left(2m-8\right)^2}{\left(m-1\right)^2}-4\cdot\dfrac{m-5}{m-1}=4\)

\(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2-6m+5\right)=4\left(m-1\right)^2\)

\(\Leftrightarrow4m^2-32m+64-4m^2+24m-20=4\left(m^2-2m+1\right)\)

\(\Leftrightarrow4m^2-8m+4-8m-44=0\)

\(\Leftrightarrow4m^2-16m-40=0\)

\(\Leftrightarrow m^2-4m-10=0\)

\(\Leftrightarrow\left(m-2\right)^2=14\)

hay \(m\in\left\{\sqrt{14}+2;-\sqrt{14}+2\right\}\)

NV
15 tháng 5 2019

\(\Delta=\left(m-2\right)^2+8m=m^2+4m+4=\left(m+2\right)^2\ge0\) \(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)

\(A=x_1^2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2=\left(m-2\right)^2+4m\)

\(A=m^2+4\ge4\)

\(\Rightarrow A_{min}=4\) khi \(m=0\)

1 tháng 11 2018

a) đường thẳng d: y=x-2m+3 tiếp xúc (P)

\(\Leftrightarrow\)PT \(x^2-2x+1=x-2m+3\) có nghiệm kép

\(\Leftrightarrow x^2-3x-2+2m=0..có..\Delta=0\\ \Leftrightarrow9+8-8m=0\Leftrightarrow m=\dfrac{17}{8}\)

b)cắt (P) tại 2 điểm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m< \dfrac{17}{8}\)(1)

2 điểm có hoành độ dương \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3>0\\-2+2m>0\end{matrix}\right.\Rightarrow}}m>-1\left(2\right)\)

*xl nha ct (2) mik viết mãi vx bị lỗi...*

từ (1) và (2) =>-1<m<17/8

c)cắt tại 2 điểm phân biệt =>m<17/8

\(x_1^3+x_2^3-4\left(x_1+x_2\right)=5\Rightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)-4\left(x_1+x_2\right)=5\\ \Rightarrow3\cdot\left(3^2-3\left(2m-2\right)\right)-4\cdot3=5\Rightarrow m=-\dfrac{1}{3}\left(TM\right)\)