Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x + 2y - x2 - xy
= 2(x + y) + x(x + y)
= (x + y) (x + 2)
mk ko bít phân tích đúng ko đúng thì t i c k nhé!! 245433463463564564574675687687856856846865855476457
a)\(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
b)\(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[\left(x+3\right)-\left(2x-5\right)\right]\)
\(=\left(x+3\right)\left(8-x\right)\)
c)\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)
\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x-2\right)^2\)
\(=\left(3x+2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]+\left(3x-2\right)\left[\left(3x-2\right)-\left(3x+2\right)\right]\)
\(=4\left(3x+2\right)-4\left(3x-2\right)\)
\(=4\left(3x+2-3x+2\right)\)
=4.4=16
( 3x - 1 )( x + 3 ) + 9x2 - 1 = 0
<=> 3x2 + 9x - x - 3 + 9x2 - 1 = 0
<=> 12x2 + 8x - 4 = 0
<=> 4( 3x2 + 2x - 1 ) = 0
<=> 3x2 + 2x - 1 = 0
<=> 3x2 + 3x - x - 1 = 0
<=> ( 3x2 + 3x ) - ( x + 1 ) = 0
<=> 3x( x + 1 ) - 1( x + 1 ) = 0
<=> ( 3x - 1 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)
Vậy S = { 1/3 ; -1 }
\(\frac{x+1}{3}>\frac{3x-2}{5}\)
\(\Leftrightarrow\frac{5\left(x+1\right)}{15}>\frac{3\left(3x-2\right)}{15}\)
\(\Leftrightarrow5x+5>9x-6\)
\(\Leftrightarrow5x-9x>-6-5\)
\(\Leftrightarrow-4x>-11\)
\(\Leftrightarrow x< \frac{11}{4}\)
Bài làm:
a) \(\left(3x-1\right)\left(x+3\right)+9x^2-1=0\)
\(\Leftrightarrow3x^2+8x-3+9x^2-1=0\)
\(\Leftrightarrow12x^2+8x-4=0\)
\(\Leftrightarrow3x^2+2x-1=0\)
\(\Leftrightarrow\left(3x^2+3x\right)-\left(x+1\right)=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)
Vậy tập nghiệm của PT \(S=\left\{-1;\frac{1}{3}\right\}\)
b) \(\frac{x+1}{3}>\frac{3x-2}{5}\Leftrightarrow\frac{5\left(x+1\right)}{15}>\frac{3\left(3x-2\right)}{15}\)
\(\Rightarrow5x+5>9x-6\)
\(\Leftrightarrow4x< 11\)
\(\Rightarrow x< \frac{11}{4}\)
b) \(3x\left(x+5\right)-2x-10=0\)
\(\Leftrightarrow3x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-5\end{cases}}\)
c) \(x^3-9x=0\)
\(\Leftrightarrow x\left(x^2-9\right)=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
TH1: \(x=0\)
TH2: \(x-3=0\Rightarrow x=3\)
\(x+3=0\Rightarrow x=-3\)
Vậy:..
d) \(\left(5+2x\right)\left(2x-7\right)=4x^2-25\)
\(\Leftrightarrow\left(5+2x\right)\left(2x-7\right)=\left(2x-5\right)\left(2x+5\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(2x-7-2x+5\right)=0\)
\(\Leftrightarrow-2\left(2x+5\right)=0\)
\(\Leftrightarrow2x+5=0\)
\(\Leftrightarrow x=-\frac{5}{2}\)
e) \(x^2-11x+30=0\)
\(\Leftrightarrow x^2-5x-6x+30=0\)
\(\Leftrightarrow x\left(x-5\right)-6\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}\)
\(5x.\left(3x-2\right)=4-9x^2\)
\(\Rightarrow5x.\left(3x-2\right)-\left(4-9x^2\right)=0\)
\(\Rightarrow5x.\left(3x-2\right)+\left(9x^2-4\right)=0\)
\(\Rightarrow5x.\left(3x-2\right)+\left(3x-2\right).\left(3x+2\right)=0\)
\(\Rightarrow\left(3x-2\right).\left(5x+3x+2\right)=0\)
\(\Rightarrow\left(3x-2\right).\left(8x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\8x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=2\\8x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{-1}{4}\end{cases}}\)
xin lỗi vì ko giúp đc zì !!! Tại ....... e ms lớp 6 à !!!!
a) \(100x^2-\left(x^2+25\right)^2\)
\(=\left(10x-x^2-25\right)\left(10x+x^2+25\right)\)( Áp dụng hằng đẳng thức số 3 )
b) ko khai phân tích dc bạn ạ
c)
\(x^3+9x^2+27x+26=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+7x+13\right)=0\Rightarrow x=-2\)
\(x^3+9x^2+27x+26=0\)
\(\Leftrightarrow x^3+9x^2+27x+27=1\)
\(\Leftrightarrow\left(x+3\right)^3=1^3\)
\(\Leftrightarrow x+3=1\Leftrightarrow x=-2\)
\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
\(x^5-9x=0\)
\(\Leftrightarrow x\left(x^4-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^4-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt[4]{9}\end{cases}}\)
x3 - 2x2 - 8x = 0
⇔ x( x2 - 2x - 8 ) = 0
⇔ x( x2 - 4x + 2x - 8 ) = 0
⇔ x[ x( x - 4 ) + 2( x - 4 ) ] = 0
⇔ x( x - 4 )( x + 2 ) = 0
⇔ x = 0 hoặc x - 4 = 0 hoặc x + 2 = 0
⇔ x = 0 hoặc x = 4 hoặc x = -2
x( x - 1 ) - x2 + 2x = 5
⇔ x2 - x - x2 + 2x = 5
⇔ x = 5
4x3 - 36x = 0
⇔ 4x( x2 - 9 ) = 0
⇔ 4x( x - 3 )( x + 3 ) = 0
⇔ 4x = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
⇔ x = 0 hoặc x = 3 hoặc x = -3
2x2 - 2x = ( x - 1 )2
⇔ 2x( x - 1 ) - ( x - 1 )2 = 0
⇔ ( x - 1 )( 2x - x + 1 ) = 0
⇔ ( x - 1 )( x + 1 ) = 0
⇔ x - 1 = 0 hoặc x + 1 = 0
⇔ x = 1 hoặc x = -1
( x - 7 )( x2 - 9x + 20 )( x - 2 ) = 72
⇔ [ ( x - 7 )( x - 2 ) ]( x2 - 9x + 20 ) - 72 = 0
⇔ ( x2 - 9x + 14 )( x2 - 9x + 20 ) - 72 = 0
Đặt t = x2 - 9x + 17
⇔ ( t - 3 )( t + 3 ) - 72 = 0
⇔ t2 - 9 - 72 = 0
⇔ t2 - 81 = 0
⇔ ( t - 9 )( t + 9 ) = 0
⇔ ( x2 - 9x + 17 - 9 )( x2 - 9x + 17 + 9 ) = 0
⇔ ( x2 - 9x + 8 )( x2 - 9x + 26 ) = 0
⇔ ( x2 - 8x - x + 8 )( x2 - 9x + 26 ) = 0
⇔ [ x( x - 8 ) - ( x - 8 ) ]( x2 - 9x + 26 ) = 0
⇔ ( x - 8 )( x - 1 )( x2 - 9x + 26 ) = 0
⇔ x - 8 = 0 hoặc x - 1 = 0 hoặc x2 - 9x + 26 = 0
⇔ x = 8 hoặc x = 1 [ x2 - 9x + 26 = ( x2 - 9x + 81/4 ) + 23/4 = ( x - 9/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x ]
\(x^3-2x^2-8x=x\left(x^2-2x-8\right)=x\left(x^2-4x+2x-8\right)=x\left[x\left(x-4\right)+2\left(x-4\right)\right]\)
\(=x\left(x+2\right)\left(x-4\right)\)
\(x\left(x-1\right)-x^2+2x=x^2-x-x^2+2x=x=5\)
\(4x^3-36x=4x\left(x^2-9\right)=4x\left(x-3\right)\left(x+3\right)\Leftrightarrow x=0\text{ hoặc }x=3\text{ hoặc }x=-3\)
\(2x^2-2x=x^2-2x+1\Leftrightarrow x^2=1\Leftrightarrow x=-1\text{ hoặc }1\)
\(\left(x-7\right)\left(x-4\right)\left(x-5\right)\left(x-2\right)=72\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)=72\)
đến đây đặt x^2-9x+14=a r giải như thường
\(\Leftrightarrow x\left(x^4-9\right)=0\Leftrightarrow x\left(x^2+3\right)\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+3=0\left(vô.nghiệm\right)\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
\(x^5-9x=0\)
\(x\left(x^4-9\right)=0\)
\(x\left[\left(x^2\right)^2-3^2\right]=0\)
\(x\left(x^2+3\right)\left(x^2-3\right)=0\)
⇒\(\left[{}\begin{matrix}x=0\\x^2+3=0\\x^2-3=0\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}x=0\left(TM\right)\\x^2=-3\left(L\right)\\x^2=3\left(L\right)\end{matrix}\right.\)