\(\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

Thay \(x=\sqrt{2},y=4-\sqrt{2}\) vào đồ thị ta có pt: \(\sqrt{2}a+b=4-\sqrt{2}\)

Thay \(x=2,y=\sqrt{2}\) vào đồ thị ta có pt: \(2a+b=\sqrt{2}\)

Ta có hpt: \(\left\{{}\begin{matrix}\sqrt{2}a+b=4-\sqrt{2}\\2a+b=\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=4+\sqrt{2}\end{matrix}\right.\)

23 tháng 4 2017

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5.

23 tháng 4 2017

Bài giải:

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5


2 tháng 3 2018

a) Do parabol qua điểm O nên ta có thể giả sử phương trình của Parabol có dạng : y = ax2 \(\left(a\ne0\right)\)

Parabol qua điểm \(M\left(\sqrt{3};3\right)\) nên ta thấy ngay \(3=a\left(\sqrt{3}\right)^3\Rightarrow a=1\)

Vậy phương trình parabol là \(y=x^2\)

Ta có bảng giá trị: 

x210-1-2
y41014

b) Vì \(K\left(\sqrt{2};4\right)\) thuộc parabol (P) nên \(4=a\left(\sqrt{2}\right)^2\Leftrightarrow a=2\)

Vậy phương trình parabol cần tìm là: \(y=2x^2\)

Bảng giá trị:

x-2-1012
y82028

25 tháng 7 2019

Câu 1:

a,Bạn tự vẽ

b,Phương trình hoành độ giao điểm của (d1) và (d2) là:

\(\(\(-2x+3=x-1\Rightarrow-3x=-4\Rightarrow x=\frac{4}{3}\)\)\)

\(\(\(\Rightarrow y=\frac{4}{3}-1=\frac{1}{3}\)\)\)

Vậy tọa độ giao điểm của (d1) và (d2) là \(\(\(\left(\frac{4}{3};\frac{1}{3}\right)\)\)\)

c,Đường thẳng (d3) có dạng: y = ax + b

Vì (d3) song song với (d1) \(\(\(\Rightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b\ne3\end{cases}}\)\)\)

Khi đó (d3) có dạng: y = -2x + b

Vì (d3) đi qua điểm A( -2 ; 1) nên \(\(\(\Rightarrow x=-2;y=1\)\)\)

Thay x = -2 ; y = 1 vào (d3) ta được:\(\(\(1=-2.\left(-2\right)+b\Rightarrow b=-3\)\)\)

Vậy (d3) có phương trình: y = -2x - 3

Câu 2:

\(A=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\left(a>0;b>0;a\ne b\right)\)(Đề chắc phải như này)

\(\(\(=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\frac{\sqrt{a}-\sqrt{b}}{1}\)\)\)

\(\(\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)\)\)

\(\(\(=\sqrt{a}^2-\sqrt{b}^2\)\)\)

\(\(\(=a-b\)\)\)

3 tháng 3 2020

Nè bạn :) 

Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)

\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)

\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)

Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)

\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)

Bài 1 Tìm điều kiện để căn thức \(\sqrt{-3x+6}\) có nghĩa 2) Tính a)\(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\) b) \(3\sqrt{8}-\sqrt{50}-\sqrt{\left(\sqrt{2-1}\right)^2}\) 3)Cho hệ phương trình \(\left\{{}\begin{matrix}4x+ay=b\\x-by=a\end{matrix}\right.\) Tìm a,b để hệ đã cho có nghiệm duy nhất (x,y)=(2;-1) Bài 2 Cho hàm số y=(2m-1)x+m-3 a) Tìm m để đồ thị hàm số đi qua điểm (2;5) b) Tìm m để đồ thị của hàm số cắt trục...
Đọc tiếp

Bài 1 Tìm điều kiện để căn thức \(\sqrt{-3x+6}\) có nghĩa 2) Tính a)\(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\) b) \(3\sqrt{8}-\sqrt{50}-\sqrt{\left(\sqrt{2-1}\right)^2}\) 3)Cho hệ phương trình \(\left\{{}\begin{matrix}4x+ay=b\\x-by=a\end{matrix}\right.\) Tìm a,b để hệ đã cho có nghiệm duy nhất (x,y)=(2;-1) Bài 2 Cho hàm số y=(2m-1)x+m-3 a) Tìm m để đồ thị hàm số đi qua điểm (2;5) b) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ \(x=\sqrt{2}-1\) Bài 3 \(M=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\) (a>0;a khác 4) a) Rút gọn M b) Tìm a sao cho m<-2 Bài 4 Tính (a)\(\sqrt{313^2-312^2}+\sqrt{17^{2-8^2}}\left(b\right)\frac{2+\sqrt{2}}{1+\sqrt{2}}\) 2) Giai hệ phương trình\(\left\{{}\begin{matrix}2x+y=3\\3x-2y=1\end{matrix}\right.\) 3) Tìm X biết \(\sqrt{9\left(x-1\right)}=21\) Bài 5 Cho hàm số y=(m-1)x+m+3 a) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y=-2x+1 b) Tìm giá trị của m để đồ thị hàm số đi qua điểm (1;-4 ) Bài 6 Cho biểu thức \(A=\left(\frac{\sqrt{x}}{\sqrt{x-1}}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\) a) Tìm đkxđ ,Rút gọn A b) Tính giá trị của A khi \(x=3-2\sqrt{2}\) Bài 7 1) Tính( a)\(\frac{\sqrt{5}}{4}-\frac{1}{\sqrt{5}+1}\left(b\right)\left(8\sqrt{27}-6\sqrt{48}\right):\sqrt{3}\) 2) Cho\(A=\left(1-\frac{4}{\sqrt{x}+1}+\frac{1}{x-1}\right):\frac{x-2\sqrt{x}}{x-1}\) Với x>0 ,x khác 1, x khác 4 a)rút gọn b) Tìm x để \(A=\frac{1}{2}\) Bài 8 Cho hàm số Y=(m-2)x+n (a)Đi qua điểm A (-1;2) và B(3;-4) (b) Cắt Oy tại điểm có tung độ bằngà cắt Ox tại điểm có hoành độ bắngìm các giá trị của m và n để đồ thị (d) của hàm số( xin cảm ơn )

0