Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9x4+16y6-24x2y3
=(3x2)2-2.3x2.4y3+(4y3)2
=(3x2-4y3)2
b) 16x2-24xy+9y2
=(4x)2-2.4x.3y+(3y)2
=(4x-3y)2
c) 36x2-(3x-2)2
=(36x-3x+2)(36x+3x-2)
=(33x+2)(39x-2)
d) 27x3+54x2y+36xy2+8y3
=(3x)3+3.(3x)2.2y+3.3x.(2y)2+(2y)3
=(3x+2y)3
e) y9-9x2y6+27x4y3-27x6
=(y3)3-3.(y3)2.3x2+3.y3.(3x2)2-(3x2)3
=(y3-3x2)3
f) 64x3+1
= (4x)3+13
=(4x+1)[(4x)2-4x.1+12]
=(4x+1)(16x2-4x+1)
e) 27x6-8x3 *sửa đề*
=(3x2)3-(2x)3
=(3x2-2x)[(3x)2+3x2.2x+(2x)2]
=(3x2-2x)(9x2+6x3+4x2)
~~~
Bài 1:
\(a,27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3.\left(3x\right)^2.1+3.3x.1^2+1^3\)
\(=\left(3x+1\right)^3\)
\(b,x^3+3\sqrt{2}x^2y+6xy^2+2\sqrt{2}y^3\)
\(=x^3+3.x^2.\sqrt{2}y+3.x.\left(\sqrt{2}y\right)^2+\left(\sqrt{2}y\right)^3\)
\(=\left(x+\sqrt{2}y\right)^3\)
Bài 2:
\(a,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(b,\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3-4x^2+4x+x-1=0\)
\(\Leftrightarrow-x^2+8x=0\)
\(\Leftrightarrow-x\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
1)
a) = (3x+1)3
b) (x+\(\sqrt{2}\) )3
2)
a)\(x^3+9x^2+27x+27=0\\ \left(x+3\right)^3=0\\ =>x=-3\)
b) Bài cuối bạn tự làm nhé! Mình mắc học bài
# Chúc bạn học tốt !
a.
\(x^2+4y^2+4xy=0\)
\(\Leftrightarrow\left(x+2y\right)^2=0\)
\(\Leftrightarrow x+2y=0\)
\(\Leftrightarrow x=-2y\)
Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)
b.
\(2y^4-9y^3+2y^2-9y=0\)
\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)
\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)
c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được
\(\frac{1}{x^2+3}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{1}{2}\left(27-\frac{1}{x+9}\right)\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}=27-\frac{1}{x+9}\)
Mà
\(\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}\)
\(=\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}\)
\(=\frac{1}{x}-\frac{1}{x+9}\)
\(\Rightarrow\frac{1}{x}=27\Rightarrow x=\frac{1}{27}\)
a, \(4x^2-4x=-1\Leftrightarrow4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
b, \(27x^3+27x^2+9x+1=0\Leftrightarrow27x^3+1+27x^2+9x=0\)
\(\Leftrightarrow\left(3x+1\right)\left(9x^2-3x+1\right)+9x\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(9x^2+2>0\right)=0\Leftrightarrow x=-\frac{1}{3}\)
c, \(9x^2\left(x+1\right)-4\left(x+1\right)=0\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\Leftrightarrow x=-\frac{2}{3};x=\frac{2}{3};x=-1\)
d, \(\left(x+1\right)^3-25\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)^2-25\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)\left(x+6\right)=0\Leftrightarrow x=-1;x=-6;x=4\)
Với đề bài và đã có x ta chỉ cần thay x vào là được :
\(101^3-3.101^2+3.101-1=\)
\(97^3+9.97^2+27.97+27=\)
Dùng hằng đẳng thức đi bạn :)
a)\(x^3-3x^2+3x-1=\left(x-1\right)^3=\left(101-1\right)^3=100^3=1000000\)
b)\(x^3+9x^2+27x+27=\left(x+3\right)^3=\left(97+3\right)^3=100^3=1000000\)
a) A=x^2+4x+4=(x+2)^2.
Giờ ta tính giá trị của đa thức A với x=98:
A=(98+2)^2=100^2=10000
b) B=x^3+9x^2+27x+27=(x+3)^3.
Thế x=-103 => (-103+3)^3=-1000000
c) Tách C = a⋅b−a⋅c+2⋅c−2⋅b rồi kết hợp lại thành C=(a−2)⋅b+(2−a)⋅c.
Thế a,b,c vào được vậy
C=(2−2)⋅1.007+(2−2)⋅(−0.006) =0
d) Bài này khó quá mà tui nghĩ là đưa mấy cặp (2023^2-2022^2) thành dạng a^2-b^2=(a-b)(a+b) á
d: D=(2023^2-2022^2)+(2021^2-2020^2)+...+(3^2-2^2)+(1^2-0^2)
=2023+2022+...+3+2+1+0
=2023*2024/2=2047276