Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để 2 tam giác bằng nhau theo TH g.c.g thì cần thêm điều kiện:
TH1:
$\widehat{A}=\widehat{A'}$
$\widehat{B}=\widehat{B'}$
TH2:
$\widehat{A}=\widehat{A'}$
$\widehat{C}=\widehat{C'}$
TH3:
$\widehat{B}=\widehat{B'}$
$\widehat{C}=\widehat{C'}$
Cách 1:
\(\widehat{A}=\widehat{A'}\) và \(\widehat{B}=\widehat{B'}\)
Cách 2:
\(\widehat{A}=\widehat{A'}\) và \(\widehat{C}=\widehat{C'}\)
Cách 3:
\(\widehat{B}=\widehat{B'}\) và \(\widehat{C}=\widehat{C'}\)
Không được k 3 lần đâu, bạn làm kiểu gì, hay là bạn bảo thế xong rồi lúc có người giải rồi bạn lại bảo:" Xin lỗi bạn, Online Math không cho phép k 3 lần, mình chỉ k được một lần thôi, thông cảm cho mình nhé ...".
THÔI ĐI!?
KHÔNG AI TIN LÀ BẠN K CHO 3 LẦN ĐÂU, MÌNH NGHĨ BẠN NÊN NÓI THẬT THÌ TỐT HƠN ĐÓ !!?
( CHO CẠNH ĐÁY BC = 25 CM)
MÀ TAM GIÁC ABC CÂN TẠI A
=> AB =AC
MÀ AB+ AC+ BC = 62 ( CHU VI CỦA TAM GIÁC)
=> AB + AB+BC = 62
THAY SỐ: 2 AB + 25 = 62
2 AB = 62 - 25
2 AB = 37
AB = 37:2
AB =18,5
=> AB =AC =18,5
CHÚC BN HỌC TỐT!!!!
a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (cmt).
+ \(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)
+ MB = NC (gt).
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).
Xét tam giác ABC có: AB = AC (cmt).
\(\Rightarrow\) Tam giác ABC cân tại A.
b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)
Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{}\) (đối đỉnh).
\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)
Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:
+ MB = NC (gt).
+ \(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)
\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).
c/ Tam giác MBH = Tam giác NCK (cmt).
\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).
Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).
\(\Rightarrow\) Tam giác OMN tại O.
A B C H D I
GT:AH vuông BC
AD=AB
DI vuông AH
KL:BH=ID
Bài làm
Ta có:
\(\widehat{A1}=\widehat{A2}\)(đối đỉnh)(1)
\(AB=AD\)(GT)(2)
mà\(\widehat{B}=180^0-90^0-\widehat{A1}\)
\(\widehat{D}=180^0-90^0-\widehat{A2}\)
và\(\widehat{A1}=\widehat{A2}\)
=>\(\widehat{B}=\widehat{D}\)(3)
Từ (1),(2),(3) suy ra:\(\Delta\)ABH=\(\Delta\)ADI(g-c-g)
=>BH=ID(hai cạnh tương ứng)
Vậy BH=ID
Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}=\frac{x-y+x+y}{16}=\frac{2x}{16}=\frac{x}{8}=\frac{25x}{200}=\frac{xy}{200}\)
Suy ra: \(25x=xy\Rightarrow y=25\)
Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}\)
Suy ra: \(13x-13y=3x+3y\)
Thế y vào đẳng thức trên:
\(13x-325=3x+75\)
Suy ra: \(10x=325+75=400\Rightarrow x=40\)
Vậy ........
Xét ΔABC có BC-AB<AC<BC+AB
=>16-3<AC<16+3
=>13<AC<19
mà AC là số nguyên tố
nên AC=17(cm)