K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2021

\(\dfrac{x^3+y^3}{6}=\dfrac{x^3-2y^3}{4}\\ \Rightarrow4x^3+4y^3=6x^3-12y^3\\ \Rightarrow2x^3=16y^3\\ \Rightarrow x^3=8y^3\\ \Rightarrow x=2y\)

Mà \(x^6\cdot y^6=64\Rightarrow\left(2y\right)^6\cdot y^6=64\Rightarrow64\cdot y^{12}=64\)

\(\Rightarrow y^{12}=1\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=2\\y=-1\Rightarrow x=-2\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2;1\right);\left(-2;-1\right)\)

13 tháng 6 2017

b, \(\dfrac{x^3+y^3}{6}\) = \(\dfrac{x^3-2y^3}{4}\)và x6.y6=64

=>(x3+y3 ).4=(x3-2y3).6

=>4x3+4y3=6x3-12y3

=> 4y3 + 12y3= 6x3-4x3

=> 15y3=2x3

Làm được thế này thoy

6 tháng 8 2017

bn cần gấp ko mk lm cho

Bài nay nhiều cách giải . Bạn đặt k đi. MK đang bận để mai kt nên k kịp giải . Để tối mai mk giải cho

26 tháng 10 2017

a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)

\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)

\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)

Xin lỗi mình chỉ làm được câu a)

26 tháng 10 2017

buồn nhỉ

3 tháng 11 2018

a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)\(x+y-z=69\)

Theo đề bài, ta có:

\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)

\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)

Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)

31 tháng 10 2018

Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))

\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6

Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:

\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)

\(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)

\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)

\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)

Vậy x=60; y=72; z=63

2 tháng 1 2018

Lời giải

Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\dfrac{x^3+y^3}{6}=\dfrac{x^3+2y^3}{4}=\dfrac{x^3+2y^3-x^3-y^3}{4-6}=\dfrac{y^3}{-2}\left(1\right)\)

\(\dfrac{x^3+y^3}{6}=\dfrac{x^3+2y^3}{4}=\dfrac{2x^3+2y^3}{12}=\dfrac{2x^3+2y^3-x^3-2y^3}{12-4}=\dfrac{x^3}{8}\left(2\right)\)

Từ (1) và (2) ta có: \(\dfrac{y^3}{-2}=\dfrac{x^3}{8}\)

Từ dữ kiện đề bài: \(\left|xy\right|=2\Leftrightarrow\left[{}\begin{matrix}xy=2\\xy=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^3y^3=8\\x^3y^3=-8\end{matrix}\right.\)

Đặt t là xong,Đến đây dễ r:v