Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{20}.9^3+15.4^9.81^2}{6^8.2^{11}+12^{10}}\)
\(=\frac{2^{20}.3^6+5.2^{18}.3^9}{2^{19}.3^8+2^{20}.3^{10}}\)
\(=\frac{2^{18}.3^6.\left(2^2+5.3^3\right)}{2^{19}.3^8.\left(1+2.3^2\right)}=\frac{139}{2.3^2.19}=\frac{139}{342}\)
CÔNG CHÚA ORI bạn có thể ghi bước trung gian đoạn cuối giúp mk đc ko??? Mk ko hỉu cho lắm
a)(2x-3)2=16
=>2x-3=4 hoặc 2x-3=-4
<=>2x=7 hoặc 2x=-1
<=>x=7/2 hoặc x=-1/2
b)(3x-2)5=243=35
=>3x-2=3
=>3x=5
=>x=5/3
c)(7x+2)-1=52
<=>\(\frac{1}{7x+2}=25\)
<=>25(7x+2)=1
<=>175x+50=1
<=>175x=-49
<=>x=-49:175
<=>x=-7/25
d)(x-3/4)4=81=34=(-3)4
=>x-3/4=3 hoặc x-3/4=-3
<=>x=3+3/4 hoặc x=-3+3/4
<=>x=15/4 hoặc x=-9/4
a. 2x = 8 ; b. 5x = 25 ; c. 3x : 35 = 9 d. \(\dfrac{16}{2^x}=2\) ; e. 8x : 2x = 4 ; f. 2x . 3x = 36 ; g. \(\dfrac{\left(-3\right)^n}{81}=-27\)
2x = 23 5x = 52 3x : 35 = 32 \(\dfrac{2^4}{2^x}=1\) ( 23)x : 2x = 22 6x = 62 \(\dfrac{\left(-3\right)^n}{\left(-3\right)^4}=\left(-3\right)^3\)
x = 3 x = 3 3x = 32 . 35 \(2^{4-x}=2^1\) 23x : 2x = 22 x = 2 \(\left(-3\right)^n=\left(-3\right)^3.\left(-3\right)^4\)
3x = 37 \(\Rightarrow4-x=1\) 23x - x = 22 \(\left(-3\right)^n=\left(-7\right)^7\)
=>X = 7 x = 4 - 1 22x = 22 => n = 7
x = 3 2x = 2
x = 2 : 2
x = 1
\(8^4.16^5=\left(2^3\right)^4.\left(2^4\right)^5=2^{12}.2^{20}=2^{12+20}=2^{32}.\)
\(27^4.81^{10}=\left(3^3\right)^4.\left(3^4\right)^{10}=3^{12}.3^{40}=3^{52}.\)
*)ta thấy 8<3 và 30 < 20 => \(8^{30}< 3^{20}\)
84.165=(23)4.(24)5=212.220=212+20=232.
274.8110=(33)4.(34)10=312.340=352.
8<3 và 30 < 20 =>
`(3/5 x-2)^4 =16/81`
`=> (3/5 x-2)^4 =(+-2/3)^4`
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{5}x-2=\dfrac{2}{3}\\\dfrac{3}{5}x-2=-\dfrac{2}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\dfrac{3}{5}x=\dfrac{8}{3}\\\dfrac{3}{5}x=\dfrac{4}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{40}{9}\\x=\dfrac{20}{9}\end{matrix}\right.\)
\(\left(\dfrac{3}{5}x-2\right)^4=\dfrac{16}{81}\)
\(\Rightarrow\left[\left(\dfrac{3}{5}x-2\right)^2\right]^2=\left(\dfrac{4}{9}\right)^2\)
TH1: \(\left(\dfrac{3}{5}x-2\right)^2=-\dfrac{4}{9}\) (vô lý)
Vì: \(\left(\dfrac{3}{5}x-2\right)^2\ge0\forall x\) mà \(-\dfrac{4}{9}< 0\)
TH2: \(\left(\dfrac{3}{5}x-2\right)^2=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{3}{5}x-2\right)^2=\left(\dfrac{2}{3}\right)^2\)
Ta lại có hai trương hợp:
TH1: \(\dfrac{3}{5}x-2=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{3}{5}x=\dfrac{8}{3}\Rightarrow x=\dfrac{40}{9}\)
TH2: \(\dfrac{3}{5}x-2=-\dfrac{2}{3}\)
\(\Rightarrow\dfrac{3}{5}x=\dfrac{4}{3}\Rightarrow x=\dfrac{20}{9}\)