Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm 1 bài thôi nhé
Bài 5
\(a.1-2y+y^2=\left(1-y\right)^2\)
\(b.\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x-4\right)\left(x+6\right)\)
\(c.1-4x^2=1-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
\(d.27+27x+9x^2+x^3=3^3+3.3^3.x+3.3.x^2+x^3=\left(3+x\right)^3\)
\(f.8x^3-12x^2y+6xy-y^3=\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y-y^3=\left(2x-y\right)^3\)
Bài 4 :
a, \(x^3+3x^2-x-3=x^2\left(x+3\right)-\left(x+3\right)=\left(x+1\right)\left(x-1\right)\left(x+3\right)\)
b, bạn xem lại đề nhé
c, \(x^2-4x+4-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
d, \(5x+5-x^2+1=5\left(x+1\right)+\left(1-x\right)\left(x+1\right)=\left(x+1\right)\left(6-x\right)\)
a. Ta có: \(A=n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)=n^2\left(n^4+2n^2-n^2-2\right)=n^2[\left(n^2+2\right)-\left(n^2+2\right)]=n^2\left(n^2+2\right)\left(n^2-1\right)\)
Ta lại có: 72 = 8.9 với (8;9) = 1
Xét các trường hợp:
+ Với n = 2k => \(A=\left(2k\right)^2\left(2k+1\right)\left(2k-1\right)\left(4k^2+2\right)\)
\(=8k^2\left(2k+1\right)\left(2k-1\right)\left(2k^2+1\right)⋮8\)
+ Với n = 2k + 1 => \(A=\left(2k+1\right)^2\left(2k+1-1\right)^2=\left(4k^2+4k+1\right)4k^2⋮8\)
Tương tự xét các trường hợp n= 3a và \(n=3a\pm1⋮9\)
Vậy \(A⋮8.9\) hay A chia hết cho 72 ( đpcm)
b.
a) x(x-y)+(x-y)=(x+1)(x-y)
b) 2x+2y -x(x+y)= 2(x+y)-x(x+y)=(2-x)(x+y)
3) \(\sqrt{\left(x-2\right)\left(x+1\right)}\) thì (x-2)(x+1)>0
=> x2 -x-2>0
=> x2 - x - \(\dfrac{1}{2}\)- \(\dfrac{3}{2}\)>0
= (x+\(\dfrac{1}{4}\))2 - 3/2 >0
=> x+ 1/4>3/2
=> x>5/4
4) Có x đâu mà tìm bạn??
da em ghi nham x thanh n :<