Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ne\pm m\)
\(\frac{m}{x-m}+\frac{3m^2-4m+3}{m^2-x^2}=\frac{1}{x+m}\)
\(\Leftrightarrow\frac{m\left(x+m\right)}{x^2-m^2}-\frac{3m^2-4m+3}{x^2-m^2}-\frac{x-m}{x^2-m^2}=0\)
\(\Leftrightarrow\frac{mx+m^2-3m^2+4m-3-x+m}{x^2-m^2}=0\)
\(\Leftrightarrow mx+m^2-3m^2+4m-3-x+m=0\)
\(\Leftrightarrow\left(m-1\right)x-2m^2+5m-3=0\)
Với \(m-1=0\Leftrightarrow m=1\), khi đó \(-2m^2+5m-3=0\)
Vậy thì phương trình có vô số nghiệm khác \(\pm1.\)
Với \(m-1\ne0\Leftrightarrow m\ne1\)
Khi đó phương trình có nghiệm duy nhất \(x=\frac{2m^2-5m+3}{m-1}=2m-3\)
KL:
Với \(m=\pm1,\) phương trình vô số nghiệm khác \(\pm1.\)
Với \(m\ne\pm1,\) phương trình có một nghiệm duy nhất \(x=2m-3\)
ý 1: khi m=2 thì:
(m + 1 )x - 3 = x + 5
<=>(2+1)x-3=x+5
<=>3x-3=x+5
<=>2x=8
<=>x=4
Vậy khi m=2 thì x=4.
ý 2:
Để pt trên <=> với 2x-1=3x+2
Thì 2 PT phải có cùng tập nghiệm hay nghiệm của 2x-1=3x+2 cũng là nghiệm của PT (m + 1 )x - 3 = x + 5
Ta có: 2x-1=3x+2
<=>x=-3
=>(m+1).(-3)-3=(-3)+5
<=>-3m-3-3=2
<=>-3m=8
<=>m=-8/3
Vậy m=-8/2 thì 2 PT nói trên tương đương với nhau.
\(\left(m^2-3\right)x+5=x+m+3\)
\(\left(m^2-3\right)x-x=m-2\)
\(\left(m^2-4\right)x=m-2\)
\(\frac{\left(m+2\right)\left(m-2\right)x}{m-2}=1\)
\(\left(m+2\right)x=1\)
Để biểu thức trên thỏa mãn thì m = -1 ; x = 1