\(\sqrt{x^3+4x}\)

giúp mk vs. mk tk cho

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

\(x^2+2x+4=3\sqrt{x^3+4x}\)đk \(x\ge0\)

\(x^2+2x+4=3\sqrt{x\left(x^2+4\right)}\)

đặt \(x^2+4=t\)

=> \(t+2x=3\sqrt{tx}\Leftrightarrow t^2-5tx+4x^2=0\)

\(\Leftrightarrow\left(t-x\right)\left(t-4x\right)=0\Leftrightarrow\orbr{\begin{cases}t=x\\t=4x\end{cases}}\)

nếu t=x phương trình trở thành \(x^2+4=x\Leftrightarrow x^2-x+4=0\Rightarrow ptvonghiem\)

nếu t=4x phương trinh trở thành \(x^2+4=4x\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

vậy x=2 là nghiệm của pt 

15 tháng 2 2017

x=2

nhớ k cho nha

4 tháng 4 2019

\(\sqrt{2x+1}-\sqrt{5-x}+x-6=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(1-\sqrt{5-x}\right)+x-4=0\)

\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{5-x}+1}+x-4=0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{5-x}+1}+1\right)=0\)

\(\Leftrightarrow x=4\)

27 tháng 6 2017

1) Đk: x khác -3

x khác 1

Biểu thức \(\Leftrightarrow\dfrac{x^2-x}{x^2+2x-3}+\dfrac{2x+6}{x^2+2x-3}=\dfrac{12}{x^2+2x-3}\)

\(\Leftrightarrow x^2-x+2x+6=12\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

kl: x thuộc {-3;2}

27 tháng 6 2017

@Nguyễn Thị Giang Thanh

NV
6 tháng 8 2020

7/

ĐKXĐ: \(-3\le x\le\frac{2}{3}\)

\(\Leftrightarrow2x+8\sqrt{x+3}+4\sqrt{3-2x}=2\)

\(\Leftrightarrow8\sqrt{x+3}+4\sqrt{3-2x}-\left(3-2x\right)+1=0\)

\(\Leftrightarrow8\sqrt{x+3}+\sqrt{3-2x}\left(4-\sqrt{3-2x}\right)+1=0\)

Do \(x\ge-3\Rightarrow3-2x\le9\Rightarrow\sqrt{3-2x}\le3\)

\(\Rightarrow4-\sqrt{3-2x}>0\)

\(\Rightarrow VT>0\)

Phương trình vô nghiệm (bạn coi lại đề)

NV
6 tháng 8 2020

5/

\(\Leftrightarrow8x^2-3x+6-4x\sqrt{3x^2+x+2}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{3x^2+x+2}+3x^2+x+2\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{3x^2+x+2}\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-\sqrt{3x^2+x+2}=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow x=2\)

6/

ĐKXĐ: ....

\(\Leftrightarrow\left(x-2000-2\sqrt{x-2000}+1\right)+\left(y-2001-2\sqrt{y-2001}+1\right)+\left(z-2002-2\sqrt{z-2002}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2001\\y=2002\\z=2003\end{matrix}\right.\)