Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x\ge\dfrac{5}{2}\)có: \(A=x+\sqrt{2x-5}\ge\dfrac{5}{2}+0=\dfrac{5}{2}\)
Dấu '=' xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
\(\Rightarrow A_{min}=\dfrac{5}{2}\)
ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{x-3}=2\sqrt{x^2-9}\)
\(\Leftrightarrow x-3=4\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4\left(x+3\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{4}\left(loại\right)\end{matrix}\right.\)
B1 Tìm ĐKXĐ
B2 Đặt pt đã cho là pt (1)=>pt (1) <=>\(\frac{x+3}{\sqrt{4x-1}-\sqrt{3x-2}}\) =5
B3 Trục căn thứ ở mẫu => (1) <=> \(\sqrt{4x+1}+\sqrt{3x-2}\)=5
B4 Bình phương 2 vế được (1)<=>\(26-7x\)=\(2\sqrt{12x^2-5x-2}\)
B5 Tiếp tục bình phương hai vế ta tìm được x=2 (Thỏa mãn)
\(\Leftrightarrow\sqrt{x+4}\left(\sqrt{x-4}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-4=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=8\end{matrix}\right.\)
a,ĐKXĐ:\(x\ge2\)
\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)
b,ĐKXĐ:\(x\in R\)
\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
c, ĐKXĐ:\(x\ge0\)
\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)
a, ĐKXĐ: \(x\le2\)
\(\sqrt{4-2x}=5\\ \Leftrightarrow4-2x=25\\ \Leftrightarrow2x=-21\\ \Leftrightarrow x=-10,5\left(tm\right)\)
b, ĐKXĐ: \(x\ge-1\)
\(\sqrt{25\left(x+1\right)}+\sqrt{9x+9}=16\\ \Leftrightarrow5\sqrt{x+1}+\sqrt{9\left(x+1\right)}=16\\ \Leftrightarrow5\sqrt{x+1}+3\sqrt{x+1}=16\\ \Leftrightarrow8\sqrt{x+1}=16\\ \Leftrightarrow\sqrt{x+1}=2\\ \Leftrightarrow x+1=4\\ \Leftrightarrow x=3\)
c, \(\sqrt{4x^2+12x+9}=4\Leftrightarrow4x^2+12x+9=16\\ \Leftrightarrow4x^2+12x-7=0\\ \Leftrightarrow\left(4x^2-2x\right)+\left(14x-7\right)=0\\ \Leftrightarrow2x\left(2x-1\right)+7\left(2x-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
a: \(\Leftrightarrow4-2x=25\)
hay \(x=-\dfrac{21}{2}\)
c: \(\Leftrightarrow\left|2x+3\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4\\2x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
\(\sqrt{2x+1}-\sqrt{5-x}+x-6=0\)
\(\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(1-\sqrt{5-x}\right)+x-4=0\)
\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{5-x}+1}+x-4=0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{5-x}+1}+1\right)=0\)
\(\Leftrightarrow x=4\)