Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. đk: pt luôn xác định với mọi x
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)
Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!
2. đk: \(x\geq 1\)
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)
Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!
Câu 1, \(\left(1\right)\hept{\begin{cases}\sqrt[4]{x^3}+\sqrt[5]{y^3}=35\\\sqrt[4]{x}+\sqrt[5]{y}=5\end{cases}}\)
ĐKXĐ: x > 0
Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\left(a\ge0\right)\\\sqrt[5]{y}=b\end{cases}}\)
Hệ ban đầu trở thành
\(\hept{\begin{cases}a^3+b^3=35\\a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)\left(a^2-ab+b^2\right)=35\\a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5.\left[\left(a+b\right)^2-3ab\right]=35\\a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2-3ab=7\\a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}25-3ab=7\\a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}ab=6\\a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\left(5-a\right)=6\\b=5-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5a-a^2=6\\b=5-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2-5a+6=0\\b=5-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-3\right)\left(a-2\right)=0\\b=5-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=3\\b=2\end{cases}\left(h\right)\hept{\begin{cases}a=2\\b=3\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt[4]{x}=3\\\sqrt[5]{y}=2\end{cases}}\left(h\right)\hept{\begin{cases}\sqrt[4]{x}=2\\\sqrt[5]{y}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=81\\y=32\end{cases}\left(h\right)\hept{\begin{cases}x=16\\y=243\end{cases}}}\)(Thỏa mãn)
Vậy
2/ Đặt \(\hept{\begin{cases}\sqrt{x}=a\ge0\\\sqrt{1-x}=b\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^3+b^3=a+2b\\a^2+b^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)\left(a^2+b^2-ab\right)=a+2b\\a^2+b^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)\left(1-ab\right)=a+2b\\a^2+b^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b\left(a^2+ab+1\right)=0\\a^2+b^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=0\\a^2+b^2=1\end{cases}}\)
Bí
\(\dfrac{3\sqrt{x}}{2}-\dfrac{2\sqrt{x}-7}{3}=\sqrt{x}-1\)
\(\Leftrightarrow9\sqrt{x}-15-4\sqrt{x}+14=6\sqrt{x}-6\left(x\ge0\right)\)
\(\Leftrightarrow5\sqrt{x}-1=6\sqrt{x}-6\)
\(\Leftrightarrow x=25\left(TM\right)\)
KL.....
VP = 5 nha mn, mình bấm thừa