Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. đk: pt luôn xác định với mọi x
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)
Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!
2. đk: \(x\geq 1\)
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)
Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!
a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)
Có: \(VT=\left|1-x\right|+\left|x-2\right|\)
\(\ge\left|1-x+x-2\right|=3=VP\)
Khi \(x=0;x=3\)
b)\(\sqrt{x^2-10x+25}=3-19x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)
\(\Leftrightarrow\left|x-5\right|=3-19x\)
\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)
\(\Leftrightarrow-360x^2+104x+16=0\)
\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)
\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)
c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
Bạn coi lại đề câu a và câu c
b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)
Phương trình trở thhành:
\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)
\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)
\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)
\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))
\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)
\(\Leftrightarrow x^2=16\Rightarrow x=4\)
@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking
Giúp mk vs!
\(a,\sqrt{2x+5}=\sqrt{1-x}\)
\(\Rightarrow2x+5=1-x\)
\(2x+x=1-5\)
\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên
\(a.\sqrt[3]{2x-1}=3\)
\(\Leftrightarrow2x-1=27\)
\(\Leftrightarrow x=14\)
\(b.\sqrt[3]{x-5}=0,9\)
\(\Leftrightarrow x-5=0,729\)
\(\Leftrightarrow x=5,729\)
\(c.\sqrt[3]{x^2-2x+28}=3\)
\(\Leftrightarrow x^2-2x+28=27\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
d, Ta có: \(\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)^3=5^3\)
\(\Leftrightarrow8x^2-27x-3.2.3\sqrt[3]{x^2.x}.\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)=125\)
Vì \(2\sqrt[3]{x^2}-3\sqrt[3]{x}=5\)
\(\Rightarrow8x^2-27x-18.x.5=125\)
\(\Leftrightarrow8x^2-117x-125=0\)
\(\Leftrightarrow8x^2+8x-125x-125=0\)
\(\Leftrightarrow\left(x+1\right)\left(8x-125\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)