Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> (x - 3) (x - 2) (x + 1) (2 x + 1) = 0
\(x=3;x=2;x=-1;x=-\frac{1}{2}\)
\(6x^2-7x+2=0\)
Ta có \(\Delta=7^2-4.6.2=1,\sqrt{\Delta}=1\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7+1}{12}=\frac{2}{3}\\x=\frac{7-1}{12}=\frac{1}{2}\end{cases}}\)
\(x^6-1=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=0\)
Dễ thấy \(\hept{\begin{cases}x^2-x+1>0\forall x\\x^2+x+1>0\forall x\end{cases}}\)nên \(\hept{\begin{cases}x+1=0\\x-1=0\end{cases}}\Leftrightarrow x=\pm1\)
\(6x^2-7x+2=0\)
\(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{2}\end{cases}}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{2}{3};\frac{1}{2}\right\}\)
\(x^6-1=0\)
\(\Leftrightarrow x^6=1\)
\(\Leftrightarrow x=\pm1\)
Vậy tập nghiệm của pt là : \(S=\left\{\pm1\right\}\)
\(a.2x^2+7x-9=0\\ \Leftrightarrow2\left(x^2+\frac{7}{2}x-\frac{9}{2}\right)=0\\\Leftrightarrow x^2+\frac{7}{2}x-\frac{9}{2}=0\\ \Leftrightarrow x^2+\frac{9}{2}x-x-\frac{9}{2}=0\\\Leftrightarrow x\left(x+\frac{9}{2}\right)-\left(x+\frac{9}{2}\right)=0\\\Leftrightarrow \left(x-1\right)\left(x+\frac{9}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+\frac{9}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{9}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-\frac{9}{2}\right\}\)
\(b.x^2-4x+3=0\\\Leftrightarrow x^2-x-3x+3=0\\ \Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)=0\\\Rightarrow \left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;3\right\}\)
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
a.
3x - 2 = 2x - 3
<=> 3x -2x = -3+2
<=> x = -1
Vậy.............
b.
\(5-\left(x-6\right)=4\left(3-2x\right)\)
\(\Leftrightarrow5-x+6=12-8x\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
Vậy..........
\(a,x^2+2x+1=4.\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2=2^2.\left(x-1\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-\left(2x-2\right)^2=0\)
\(\Leftrightarrow\left(x+1+2x+2\right).\left(x+1-2x+2\right)=0\)
\(\Leftrightarrow\left(3x+3\right).\left(-x+3\right)=0\)
tự làm tiếp
\(x.\left(x-1\right).\left(x+2\right)-\left(x-5\right).\left(x^2-x+1\right)-7x^2=0\)
\(\Leftrightarrow\left(x^3+x^2-2x\right)-\left(x^3-6x^2+6x-5\right)-7x^2=0\)
\(\Leftrightarrow\left(x^3-6x^2-2x\right)-\left(x^3-6x^2-2x+8x-5\right)=0\)
\(\Leftrightarrow-8x+5=0\)
\(\Leftrightarrow-8x=-5\Rightarrow x=\frac{5}{8}\)
Vậy...
2x2-7x+6=0
=> 2x2-3x-4x+6=0
=>x(2x-3)-2(2x-3)=0
=>(x-2)x(2x-3)=0
=>TH1 x-2=0=>x=2
=>TH2 2x-3=0=>2x=3=>x=3/2
Gõ talex dễ nhìn hơn nha bạn!