K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

bạn ơi là phương trình thì phải có vế phải chứ

1 tháng 4 2017

\(2x^4-7x^3-2x^2+13x+6=0\) giải phương trình giúp mình nha

1 tháng 4 2017

<=> (x - 3) (x - 2) (x + 1) (2 x + 1) = 0

\(x=3;x=2;x=-1;x=-\frac{1}{2}\)

29 tháng 1 2019

a, Đặt pt trên là (1)

Nhận thấy : x = 0 không là nghiệm của (1)

Với x khác 0 , chia cả 2 vế của (1) cho \(x^2\) ta được :

\(2x^2+3x-1+\dfrac{3}{x}+\dfrac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+3\left(x+\dfrac{1}{2}\right)-1=0\circledast\)

Đặt \(x+\dfrac{1}{x}=y\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=y^2\)

\(\Leftrightarrow x^2+2x.\dfrac{1}{2}+\dfrac{1}{x^2}=4x^2\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}=4^2-2\)

\(\Rightarrow\circledast\Leftrightarrow2\left(y^2-2\right)+3y-1=0\)

\(\Leftrightarrow2y^2+3y-5=0\)

\(\Leftrightarrow2y^2-2y+5y-5=0\)

\(\Leftrightarrow\left(2y+5\right)\left(y-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{-5}{2}\\y=1\end{matrix}\right.\)

\(\)+ Với \(y=\dfrac{-5}{2}\Rightarrow x+\dfrac{1}{x}=\dfrac{-5}{2}\)

\(\Leftrightarrow\dfrac{2x^2+2}{2x}=\dfrac{-5x}{2x}\)

\(\Leftrightarrow2x^2+5x+2=0\)

\(\Leftrightarrow2x^2+x+4x+2=0\)

\(\Leftrightarrow x\left(2x+1\right)+2\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=-2\end{matrix}\right.\)

+ Với \(y=1\Rightarrow x+\dfrac{1}{x}=1\)

\(\Leftrightarrow\dfrac{x^2+1}{x}=\dfrac{x}{x}\)

\(\Leftrightarrow x^2+1=x\)

\(\Leftrightarrow x^2-x=-1\)

\(\Leftrightarrow x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}=-1+\dfrac{1}{4}\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\)

=> Vô nghiệm

Vậy phương trình có tập nghiệm là \(S=\left\{-2;-\dfrac{1}{2}\right\}\)

29 tháng 1 2019

a) (2x^4 +4x^3) -(x^3+2x^2 ) +(x^2+2x )+(x+2)

= 2x^3 (x+2)-x^2(x+2)+x(x+2)+(x+2)

=(x+2)(2x^3-x^2+x+1)

x+2=0 -> x=-2

hoặc 2x^3-x^2+x +1 vô no

b)câu b đặt có 1 no là 2 từ đó phân tích ra

29 tháng 1 2019

a, Xét x=0 không phải nghiệm pt chia 2 vế cho x, đặt t= x+1/x từ đó suy ra phương trình ẩn t, giải ra ta được các phương trình ẩn x rồi ra x. 

b, Tách đa thức thành tích của đơn thức (x+1) và 1 đa thức bậc 4 rồi làm như câu a,. 

29 tháng 1 2019

\(2x^4+3x^3-x^2+3x+2=0\)

\(\Leftrightarrow2x^4+4x^3-x^3-2x^2+x^2+2x+x+2=0\)

\(\Leftrightarrow2x^3.\left(x+2\right)-x^2.\left(x+2\right)+x.\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x^3-x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x^3+x^2-2x^2-x+2x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x+1\right).\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}}\)

\(\text{Vì }x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy phương trình có nghiệm \(S=\left\{-2,-\frac{1}{2}\right\}\)

18 tháng 8 2020

1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)

\(\Leftrightarrow35x-5+60x=96-6x\)

\(\Leftrightarrow95x-5=96-6x\)

\(\Leftrightarrow95x+6x=96+5\)

\(\Leftrightarrow101x=101\)

\(\Leftrightarrow x=1\)

2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) 

\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)

\(\Leftrightarrow30x+9=36+24+32x\)

\(\Leftrightarrow30x+9=32x+60\)

\(\Leftrightarrow30x-32x=60-9\)

\(\Leftrightarrow-2x=51\)

\(\Leftrightarrow x=-\frac{51}{2}\)

3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)

\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)

\(\Leftrightarrow2x+1=5x+1\)

\(\Leftrightarrow2x=5x\)

\(\Leftrightarrow x=0\)

19 tháng 8 2020

4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)

=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)

=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)

=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)

=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)

=> 27 - 9x + 80 - 16x = 12 - 12x - 48

=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0

=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0

=> 143 - 13x = 0

=> 13x = 143

=> x = 11

5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)

=> 6x - 18 + 7x - 35 - 13x - 4 = 0

=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0

=> -57 = 0(vô nghiệm)

6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)

=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)

=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)

=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)

=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)

=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)

=> \(12x+10-10x-3=12x+2\)

=> \(2x+10-3=12x+2\)

=> 2x + 10 - 3 - 12x - 2 = 0

=> (2x - 12x) + (10 - 3 - 2) = 0

=> -10x + 5 = 0

=> -10x = -5

=> x = 1/2

7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)

=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)

=> 6x - 3 - 5x + 10 - x - 7 = 0

=> (6x - 5x - x) + (-3 + 10 - 7) = 0

=> 0x + 0 = 0

=> 0x = 0

=> x tùy ý

Bài 8 tự làm nhé