Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}=\dfrac{7}{\sqrt{x-3}}\) (2)
\(\Leftrightarrow\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}-\dfrac{7}{\sqrt{x-3}}=0\)
\(\Leftrightarrow\dfrac{\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7}{\sqrt{x-3}}=0\)
\(\Leftrightarrow\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7=0\)
\(\Leftrightarrow\left|x\right|-16+\sqrt{x^2-9}-7=0\)
\(\Leftrightarrow\left|x\right|-23+\sqrt{x^2-9}=0\)
\(\Leftrightarrow\sqrt{x^2-9}=-\left|x\right|+23\)
\(\Leftrightarrow x^2-9=-\left(-\left|x\right|+23\right)^2\)
\(\Leftrightarrow x^2-9=-\left(-\left|x\right|\right)^2-46\cdot\left|x\right|+529\)
\(\Leftrightarrow x^2-9=\left|x\right|^2-46+\left|x\right|+529\)
\(\Leftrightarrow x^2-9=x^2-46\cdot\left|x\right|+529\)
\(\Leftrightarrow-9=-46\cdot\left|x\right|+529\)
\(\Leftrightarrow46\cdot\left|x\right|=529+9\)
\(\Leftrightarrow49\cdot\left|x\right|=538\)
\(\Leftrightarrow\left|x\right|=\dfrac{269}{23}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{269}{23}\\x=-\dfrac{269}{23}\end{matrix}\right.\)
Sau khi dùng phép thử ta nhận thấy \(x\ne-\dfrac{269}{23}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{269}{23}\right\}\)
3. sửa đề: \(\sqrt{14-x}=\sqrt{x-4}\sqrt{x-1}\) (3)
\(\Leftrightarrow\sqrt{14-x}=\sqrt{\left(x-4\right)\left(x-1\right)}\)
\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-x-4x+4}\)
\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-5x+4}\)
\(\Leftrightarrow14-x=x^2-5x+4\)
\(\Leftrightarrow14-x-x^2+5x-4=0\)
\(\Leftrightarrow10+4x-x^2=0\)
\(\Leftrightarrow-x^2+4x+10=0\)
\(\Leftrightarrow x^2-4x-10=0\)
\(\Leftrightarrow x=\dfrac{-\left(-4\right)\pm\sqrt{\left(-4\right)^2-4\cdot1\cdot\left(-10\right)}}{2\cdot1}\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{16+40}}{2}\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{56}}{2}\)
\(\Leftrightarrow x=\dfrac{4\pm2\sqrt{14}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4-2\sqrt{14}}{2}\\x=\dfrac{4+2\sqrt{14}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{14}\\x=2-\sqrt{14}\end{matrix}\right.\)
sau khi dùng phép thử ta nhận thấy \(x\ne2-\sqrt{14}\)
Vậy tập nghiệm phương trình (3) là \(S=\left\{2+\sqrt{14}\right\}\)
\(\sqrt[3]{x^2}+\sqrt[3]{x+1}=\sqrt[3]{x}+\sqrt[3]{x^2+x}\)
\(\Leftrightarrow\sqrt[3]{x^2}-1+\sqrt[3]{x+1}-\sqrt[3]{2}=\sqrt[3]{x}-1+\sqrt[3]{x^2+x}-\sqrt[3]{2}\)
\(\Leftrightarrow\frac{x^2-1}{\sqrt[3]{x^2}^2+\sqrt[3]{x^2}+1}+\frac{x+1-2}{\sqrt[3]{x+1}^2+\sqrt[3]{x+1}\sqrt[3]{2}+\sqrt[3]{2}^2}=\frac{x-1}{\sqrt[3]{x}^2+\sqrt[3]{x}+1}+\frac{x^2+x-2}{\sqrt[3]{x^2+x}^2+\sqrt[3]{x^2+x}\sqrt[3]{2}+\sqrt[3]{2}^2}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)}{\sqrt[3]{x^2}^2+\sqrt[3]{x^2}+1}+\frac{x-1}{\sqrt[3]{x+1}^2+\sqrt[3]{x+1}\sqrt[3]{2}+\sqrt[3]{2}^2}-\frac{x-1}{\sqrt[3]{x}^2+\sqrt[3]{x}+1}-\frac{\left(x-1\right)\left(x+2\right)}{\sqrt[3]{x^2+x}^2+\sqrt[3]{x^2+x}\sqrt[3]{2}+\sqrt[3]{2}^2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt[3]{x^2}^2+\sqrt[3]{x^2}+1}+\frac{1}{\sqrt[3]{x+1}^2+\sqrt[3]{x+1}\sqrt[3]{2}+\sqrt[3]{2}^2}-\frac{1}{\sqrt[3]{x}^2+\sqrt[3]{x}+1}-\frac{x+2}{\sqrt[3]{x^2+x}^2+\sqrt[3]{x^2+x}\sqrt[3]{2}+\sqrt[3]{2}^2}\right)=0\)
Suy ra x=1. pt kia chịu :v nghiệm lẻ quá
Thắng Nguyễn đúng là thánh troll
đặt \(\sqrt[3]{x}=a;\sqrt[3]{x+1}=b\)
pt trở thành:
a2+b=a+ab
<=>a(a-1)-b(a-1)=0
<=>(a-b)(a-1)=0
từ đó thay vào rồi giải tìm x
=> \(\sqrt{2-x}.\sqrt{3-x}+\sqrt{3-x}.\sqrt{5-x}+\sqrt{5-x}.\sqrt{2-x}+5-x=5\)
=> \(\sqrt{3-x}\left(\sqrt{2-x}+\sqrt{5-x}\right)+\sqrt{5-x}\left(\sqrt{2-x}+\sqrt{5-x}\right)=5\)
=> \(\left(\sqrt{5-x}+\sqrt{2-x}\right)\left(\sqrt{5-x}+\sqrt{3-x}\right)=5\)
=> giải tiếp nhé , mình biết lớp 10
1. đk: pt luôn xác định với mọi x
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)
Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!
2. đk: \(x\geq 1\)
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)
Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!