K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

1) x-\(\sqrt{2x-5}\)=4

ĐK: \(\left\{{}\begin{matrix}2x-5\ge0\\x\ge4\end{matrix}\right.\)=> x\(\ge\)4

x-\(\sqrt{2x-5}\)=4<=> x-4=\(\sqrt{2x-5}\)

bình phương hai vế:

\(x^2-8x+16\) =2x-5

<=>\(x^2\) -10x+21=0 <=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)

2) \(2x^2-3-5\sqrt{2x^2+3}=0\)(*)

ĐK:\(2x^2-3>0\Leftrightarrow x^2>\dfrac{3}{2}\)

<=>\(\left[{}\begin{matrix}x>\sqrt{\dfrac{3}{2}}\\x< -\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)

(*)<=>

16 tháng 4 2018

cau 2 là bằng 0 ko phải bằng 5 nha

NV
13 tháng 3 2020

a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm

- Với \(x\le\frac{1}{4}\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)

\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)

2.

- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)

\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)

- Với \(x< -\frac{1}{4}\)

\(\Leftrightarrow-4x-1=x^2+2x-4\)

\(\Leftrightarrow x^2+6x-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)

NV
13 tháng 3 2020

3.

- Với \(x\ge\frac{5}{3}\)

\(\Leftrightarrow3x-5=2x^2+x-3\)

\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)

- Với \(x< \frac{5}{3}\)

\(\Leftrightarrow5-3x=2x^2+x-3\)

\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)

4. Do hai vế của pt đều không âm, bình phương 2 vế:

\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)

\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)

\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)

\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)

Bài 1: 

\(\Leftrightarrow\left(x^2-6x-7\right)^2-\left(3x^2-12x-9\right)^2=0\)

\(\Leftrightarrow\left(3x^2-12x-9-x^2+6x+7\right)\left(3x^2-12x-9+x^2-6x-7\right)=0\)

\(\Leftrightarrow\left(2x^2-6x-2\right)\left(4x^2-18x-16\right)=0\)

\(\Leftrightarrow\left(x^2-3x-1\right)\left(2x^2-9x-8\right)=0\)

hay \(x\in\left\{\dfrac{3+\sqrt{13}}{2};\dfrac{3-\sqrt{13}}{2};\dfrac{9+\sqrt{145}}{4};\dfrac{9-\sqrt{145}}{4}\right\}\)

NV
8 tháng 3 2020

1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)

\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)

2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)

\(\Rightarrow\frac{3}{2}< x< 2\)

3. \(\Leftrightarrow\left(5x-3\right)^2>0\)

\(\Rightarrow x\ne\frac{3}{5}\)

4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)

\(\Rightarrow x\in R\)

5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)

\(\Rightarrow x\in R\)

NV
8 tháng 3 2020

6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)

\(\Rightarrow-2\le x\le-\frac{7}{8}\)

7.

\(\Leftrightarrow\left(x-1\right)^2+2>0\)

\(\Rightarrow x\in R\)

8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)

9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)

\(\Rightarrow-6< x< -3\)

10. \(\Leftrightarrow x^2-6x+9>0\)

\(\Leftrightarrow\left(x-3\right)^2>0\)

\(\Rightarrow x\ne3\)

10 tháng 2 2020

Cuối năm rồi sao vẫn làm bài này thế :D

Đáp án : C . Vì C không chứa nghiệm của pt đã cho