K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

ĐK: \(x^3+3x^2-3x+1\ge0\)

\(pt\Leftrightarrow\sqrt[3]{9x^2-15x+9}-\left(2-x\right)+\sqrt{x^3+3x^2-3x+1}=0\)

\(\Leftrightarrow\frac{9x^2-15x+9-\left(2-x\right)^3}{A^2+AB+B^2}+\sqrt{x^3+3x^2-3x+1}=0\)

\(\left(A=\sqrt[3]{9x^2-15x+9};\text{ }B=2-x\right)\)\(\text{(}A^2+AB+B^2=\left(A+\frac{B}{2}\right)^2+\frac{3B^2}{4}>0\text{)}\)

\(\Leftrightarrow\frac{x^3+3x^2-3x+1}{A^2+AB+B^2}+\sqrt{x^3+3x^2-3x+1}=0\)

\(\Leftrightarrow\sqrt{x^3+3x^2-3x+1}\left(\frac{\sqrt{x^3+3x^2-3x+1}}{A^2+AB+B^2}+1\right)=0\)

\(\Leftrightarrow x^3+3x^2-3x+1=0\text{ (do }\frac{\sqrt{x^3+3x^2-3x+1}}{A^2+AB+B^2}+1>0\text{)}\)

\(\Leftrightarrow\left(x+1+\sqrt[3]{2}+\sqrt[3]{4}\right)\left[x^2+\left(2-\sqrt[3]{2}-\sqrt[3]{4}\right)x+\sqrt[3]{2}-1\right]=0\)

\(\Leftrightarrow x+1+\sqrt[3]{2}+\sqrt[3]{4}=0\text{ (}pt\text{ }x^2+\left(2-\sqrt[3]{2}-\sqrt[3]{4}\right)x+\sqrt[3]{2}-1=0\text{ vô nghiệm do }\Delta<0\text{ )}\)

\(\Leftrightarrow x=-1-\sqrt[3]{2}-\sqrt[3]{4}\)

 

NV
24 tháng 11 2018

a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)

Bình phương 2 vế:

\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)

\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)

Vậy pt có 2 nghiệm \(x=-1;x=-5\)

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)

Phương trình trở thành:

\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)

24 tháng 11 2018

a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)

\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)

vậy \(S=\left\{-1;-2;-5\right\}\)

21 tháng 8 2019

\(\Leftrightarrow x^2-1+1-\sqrt{2x^2-3x+2}-\frac{3}{2}\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)+\frac{\left(2x-1\right)\left(x-1\right)}{1+\sqrt{2x^2-3x+2}}-\frac{3}{2}\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-\frac{1}{2}+\frac{2\left(x-\frac{1}{2}\right)}{1+\sqrt{2x^2-3x+2}}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-\frac{1}{2}\right)\left(1+\frac{2}{1+\sqrt{2x^2-3x+2}}\right)=0\)

Do \(\left(1+\frac{2}{1+\sqrt{2x^2-3x+2}}\right)>0\left(\forall x\right)\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow2x^2-9x+9-3+\sqrt{9x-2x^2}=0\)

\(\Leftrightarrow2x\left(x-3\right)-3\left(x-3\right)+\frac{\left(x-3\right)\left(-2x+3\right)}{\sqrt{9x-2x^2}+3}=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x-3-\frac{2x-3}{\sqrt{9x-2x^2}+3}\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x-3\right)\left(1-\frac{1}{\sqrt{9x-2x^2}+3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{3}{2}\end{cases}}\)

TH còn lại loại bạn tự giải nha

21 tháng 8 2019

a) đK:\(2x^2-3x+2\ge0\)

 \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)

<=> \(2x^2+6-2\sqrt{2x^2-3x+2}=3\left(x+1\right)\)

<=> \(2x^2-3x+3-2\sqrt{2x^2-3x+2}=0\)

Đặt: \(t=\sqrt{2x^2-3x+2}\left(t\ge0\right)\)

Ta có phương trình:

\(t^2-2+3-2t=0\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

Với t=1 ta có phương trình:

 \(\sqrt{2x^2-3x+2}=1\Leftrightarrow2x^2-3x+1=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=\frac{1}{2}\left(tm\right)\end{cases}}\)

Vậy:...

Câu b tương tự.

NV
13 tháng 8 2020

ĐKXĐ: \(x\ge-\frac{1}{4}\)

Đặt \(2\sqrt{x+2}+\sqrt{4x+1}=t>0\)

\(\Rightarrow t^2+3=8x+12+4\sqrt{4x^2+9x+2}\)

\(\Rightarrow2x+3+\sqrt{4x^2+9x+2}=\frac{t^2+3}{4}\) (1)

Pt trở thành:

\(\frac{t^2+3}{4}=t\Leftrightarrow t^2-4t+3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)

Thay vào (1)

\(\Rightarrow\left[{}\begin{matrix}2x+3+\sqrt{4x^2+9x+2}=1\left(2\right)\\2x+3+\sqrt{4x^2+9x+2}=3\left(3\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+2+\sqrt{4x^2+9x+2}=0\)

Do \(x\ge-\frac{1}{4}\Rightarrow VT\ge2.\left(-\frac{1}{4}\right)+2>0\) nên (1) vô nghiệm

Xét (2): \(\Leftrightarrow\sqrt{4x^2+9x+2}=-2x\) (\(x\le0\))

\(\Leftrightarrow4x^2+9x+2=4x^2\)

\(\Rightarrow x=-\frac{2}{9}\) (thỏa mãn)

7 tháng 12 2019

\(ĐKXĐ:x\ge-1,5\)

\(=>\left(2\sqrt{2x^3+5x^2+9x+9}\right)^2=\left(x^2+3x+6\right)^2\)

=>\(8x^3+20x^2=x^4+6x^3+21x^2\) ( Đã đc rút gọn )

=> \(x^4+6x^3+21x^2-\left(8x^3+20x^2\right)=0\)

=> \(x^4-2x^3+x^2=0\)

=> \(x^2\left(x-1\right)^2=0\)

=> \(\left[{}\begin{matrix}x^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left|x\right|=\sqrt{0}\\\left|x-1\right|=\sqrt{0}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy....

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9