Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(-\frac{1}{2}\le x\le4\)
\(\sqrt{4-x}=\sqrt{x+1}+\sqrt{2x+1}\)
\(\Leftrightarrow4-x=3x+2+2\sqrt{2x^2+3x+1}\)
\(\Leftrightarrow1-2x=\sqrt{2x^2+3x+1}\) (\(x\le\frac{1}{2}\))
\(\Leftrightarrow4x^2-4x+1=2x^2+3x+1\)
\(\Leftrightarrow2x^2-7x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{7}{2}\left(l\right)\end{matrix}\right.\)
Bài này liên hợp cũng được
b/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{5x+1}^2-\sqrt{5x+1}\left(\sqrt{14x+7}-\sqrt{2x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\Rightarrow x=-\frac{1}{5}\\\sqrt{5x+1}-\sqrt{14x+7}+\sqrt{2x+3}=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{5x+1}+\sqrt{2x+3}=\sqrt{14x+7}\)
\(\Leftrightarrow7x+4+2\sqrt{10x^2+17x+3}=14x+7\)
\(\Leftrightarrow2\sqrt{10x^2+17x+3}=7x+3\)
\(\Leftrightarrow4\left(10x^2+17x+3\right)=\left(7x+3\right)^2\)
\(\Leftrightarrow...\)
c/ ĐKXĐ: \(x\ge\frac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{2-2x}=a\\\sqrt{2x-1}=b\end{matrix}\right.\) ta được:
\(\left\{{}\begin{matrix}a=1-b\\a^3+b^2=1\end{matrix}\right.\) \(\Rightarrow a^3+\left(1-a\right)^2=1\)
\(\Leftrightarrow a^3+a^2-2a=0\)
\(\Leftrightarrow a\left(a^2+a-2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2-2x=0\\2-2x=1\\2-2x=-8\end{matrix}\right.\)
d/ ĐKXĐ: \(x\le\frac{5}{4}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{5-4x}=a\\\sqrt[3]{x+7}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\a^2+4b^3=33\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3-b\\a^2+4b^3=33\end{matrix}\right.\)
\(\Leftrightarrow\left(3-b\right)^2+4b^3=33\)
\(\Leftrightarrow4b^3+b^2-6b-24=0\)
\(\Leftrightarrow\left(b-2\right)\left(4b^2+9b+12\right)=0\)
\(\Rightarrow b=2\Rightarrow\sqrt[3]{x+7}=2\Rightarrow x=1\)
\(\Leftrightarrow2\left(x^2+1\right)-2x\sqrt{x^2+1}=5\)
\(\Leftrightarrow x^2+1-2x\sqrt{x^2+1}+x^2=4\)
\(\Leftrightarrow\left(\sqrt{x^2+1}-x\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}-x=2\\\sqrt{x^2+1}-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x+2\left(x\ge-2\right)\\\sqrt{x^2+1}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2+4x+4\\x^2+1=x^2-4x+4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{3}{4}\\x=\frac{3}{4}< 2\left(l\right)\end{matrix}\right.\)
ĐKXĐ: \(x\ge\frac{3}{2}\)
\(\Leftrightarrow\sqrt{5x-1}+\sqrt{2x-3}=\sqrt{3x-2}\)
\(\Leftrightarrow7x-4+2\sqrt{\left(5x-1\right)\left(2x-3\right)}=3x-2\)
\(\Leftrightarrow\sqrt{10x^2-17x+3}=1-2x\)
Do \(x\ge\frac{3}{2}\Rightarrow1-2x< 0\)
Phương trình vô nghiệm
Đặt \(a=\sqrt{2x+1},b=\sqrt{1+\sqrt{x+3}}\) thì
\(a^2-1+a=b^2-1+b\Leftrightarrow a^2-b^2+a-b=0\Leftrightarrow(a-b)(a+b+1)=0\Leftrightarrow a=b\)
Vậy
\(\sqrt{2x+1}=\sqrt{1+\sqrt{x+3}}\Leftrightarrow 2x=\sqrt{x+3}\)
theo mình thì giải thế này
đặt \(x+1=a\)
\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{a+1}=\sqrt[3]{2x^2}+\sqrt[3]{2x^2+1}\)
xét hàm suy ra \(f\left(a\right)=f\left(2x\right)\)
hay 2x = a hay x+1 = 2x suy ra x=1
vậy S = (1)
thiếu nghiệm
\(2x^2=a\Leftrightarrow2x^2-x-1=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-\frac{1}{2}\end{matrix}\right.\)
\(1+\sqrt{x^2-4x+3}-x=0\)
\(ĐK:\left\{{}\begin{matrix}\sqrt{x^2-4x+3\ge0}\\x-1\ge0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x\ge3\end{matrix}\right.\)
\(PT\Leftrightarrow\sqrt{x^2-4x+3}-\left(x-1\right)=0\)
\(\Leftrightarrow\frac{x^2-4x+3-\left(x-1\right)^2}{\sqrt{x^2-4x+3}+\left(x-1\right)}=0\)
\(\Leftrightarrow2-2x=0\Rightarrow x=1\left(tm\right)\)
đk x\(\ge-1\)
pt \(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{2x+3}\right)^2=25\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=25\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=21-3x\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(21-3x\right)^2\)đk \(x\le7\)
\(\Leftrightarrow8x^2+20x+12=9x^2-126x+441\)
\(\Leftrightarrow x^2-146x+429=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=143\left(l\right)\\x=3\left(nh\right)\end{matrix}\right.\)
ĐK : \(\left\{{}\begin{matrix}x+1\ge0\\2x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge-\frac{3}{2}\end{matrix}\right.\Leftrightarrow x\ge-1\)
Ta có :
\(\sqrt{x+1}+\sqrt{2x+3}=5\\ \Leftrightarrow\left(\sqrt{x+1}+\sqrt{2x+3}\right)^2=25\\ \Leftrightarrow x+1+2x+3+2\sqrt{\left(x+1\right)\left(2x+3\right)}=25\\ \Leftrightarrow2\sqrt{\left(x+1\right)\left(2x+3\right)}=25-3x-4\\ \Leftrightarrow2\sqrt{\left(x+1\right)\left(2x+3\right)}=21-3x\\ \Leftrightarrow4\left(x+1\right)\left(2x+3\right)=\left(21-3x\right)^2\\ \Leftrightarrow4\left(2x^2+5x+3\right)=441-126x+9x^2\\ \Leftrightarrow8x^2+20x+12=441-126x+9x^2\\ \Leftrightarrow441-126x+9x^2-8x^2-20x-12=0\\ \Leftrightarrow x^2-146x+429=0\\ \Leftrightarrow\left[{}\begin{matrix}x=143\left(TMĐK\right)\\x=3\left(TMĐK\right)\end{matrix}\right.\)
Vậy phương trình đã cho có 2 nghiệm là x=143 và x=3