K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2018

Sao lắm dấu bằng thế

26 tháng 9 2018

hack não người xem

21 tháng 3 2016

<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)

b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)

<=>\(2\sqrt{2}^x+2=6\)

<=>x=2

8 tháng 9 2018

 Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=a^3\\x-1=b^3\end{cases}}}\)

Ta có 

\(pt\Leftrightarrow a^2+b^2+ab=1\)      (1)

Lại có \(a^3-b^3=2\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=2\)        (2)

Thay (1) vào (2) ta có   a-b=2<=>a=2+b     thay và (1)

\(\left(2+b\right)^2+b^2+b\left(b+2\right)=1\)

\(\Leftrightarrow3b^2+6b+3=0\)

\(\Leftrightarrow3\left(b+1\right)^2=0\Leftrightarrow b=-1\)

\(\Leftrightarrow\sqrt[3]{x-1}=-1\Leftrightarrow x=0\)

13 tháng 2 2020

a) ĐKXD:...

\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)

Đến đây dễ rồi

13 tháng 2 2020

bước đầu bạn làm sai r. nó nằm trong căn nên ko phải bình phương nên ko thể biến đổi thành tổng bình phương được

NV
15 tháng 4 2019

a/ ĐKXĐ: \(\left|x\right|\ge1\)

- Với \(x\le-1\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+6}>0\\x-2\sqrt{x^2-1}< 0\end{matrix}\right.\) \(\Rightarrow\) pt vô nghiệm

- Với \(x>1\) ta luôn có \(\sqrt{x^2+6}>x\) (dễ dàng chứng minh bằng cách bình phương 2 vế)

\(x>x-2\sqrt{x^2-1}\Rightarrow\sqrt{x^2+6}>x-2\sqrt{x^2-1}\)

Phương trình vô nghiệm

Bạn có nhầm đề ko?

b/ ĐKXĐ: \(x\ge1\)

\(\sqrt[3]{2-x}+\sqrt{x-1}=1\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{2-x}=a\\\sqrt{x-1}=b\end{matrix}\right.\) ta có hệ:

\(\left\{{}\begin{matrix}a+b=1\\a^3+b^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=1-a\\a^3+b^2=1\end{matrix}\right.\) \(\Rightarrow a^3+\left(1-a\right)^2=1\)

\(\Leftrightarrow a^3+a^2-2a=0\) \(\Leftrightarrow a\left(a-1\right)\left(a+2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{2-x}=0\\\sqrt[3]{2-x}=1\\\sqrt[3]{2-x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\\x=10\end{matrix}\right.\)

NV
15 tháng 4 2019

c/

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{matrix}\right.\) ta có hệ:

\(\left\{{}\begin{matrix}a^3-b^3=2\\a^2+b^2+ab=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a^2+ab+b^2\right)=2\\a^2+b^2+ab=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=2\Rightarrow a=b+2\\a^2+b^2+ab=1\end{matrix}\right.\) \(\Rightarrow\left(b+2\right)^2+b^2+\left(b+2\right)b-1=0\)

\(\Leftrightarrow3b^2+6b+3=0\Rightarrow3\left(b+1\right)^2=0\Rightarrow b=-1\)

\(\Rightarrow\sqrt[3]{x-1}=-1\Rightarrow x=0\)

18 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(1-\sqrt{3}\right)x+2y=1-\sqrt{3}\\\left(1-\sqrt{3}\right)x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\sqrt{3}\\x=1+\left(1+\sqrt{3}\right)\cdot\left(-\sqrt{3}\right)=-2-\sqrt{3}\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}-x-\sqrt{2}y=\sqrt{3}\\x+\sqrt{2}y=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\in R\\x=-\sqrt{3}-y\sqrt{2}\end{matrix}\right.\)