K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2019

a/ ĐKXĐ: \(\left|x\right|\ge1\)

- Với \(x\le-1\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+6}>0\\x-2\sqrt{x^2-1}< 0\end{matrix}\right.\) \(\Rightarrow\) pt vô nghiệm

- Với \(x>1\) ta luôn có \(\sqrt{x^2+6}>x\) (dễ dàng chứng minh bằng cách bình phương 2 vế)

\(x>x-2\sqrt{x^2-1}\Rightarrow\sqrt{x^2+6}>x-2\sqrt{x^2-1}\)

Phương trình vô nghiệm

Bạn có nhầm đề ko?

b/ ĐKXĐ: \(x\ge1\)

\(\sqrt[3]{2-x}+\sqrt{x-1}=1\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{2-x}=a\\\sqrt{x-1}=b\end{matrix}\right.\) ta có hệ:

\(\left\{{}\begin{matrix}a+b=1\\a^3+b^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=1-a\\a^3+b^2=1\end{matrix}\right.\) \(\Rightarrow a^3+\left(1-a\right)^2=1\)

\(\Leftrightarrow a^3+a^2-2a=0\) \(\Leftrightarrow a\left(a-1\right)\left(a+2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{2-x}=0\\\sqrt[3]{2-x}=1\\\sqrt[3]{2-x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\\x=10\end{matrix}\right.\)

NV
15 tháng 4 2019

c/

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{matrix}\right.\) ta có hệ:

\(\left\{{}\begin{matrix}a^3-b^3=2\\a^2+b^2+ab=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a^2+ab+b^2\right)=2\\a^2+b^2+ab=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=2\Rightarrow a=b+2\\a^2+b^2+ab=1\end{matrix}\right.\) \(\Rightarrow\left(b+2\right)^2+b^2+\left(b+2\right)b-1=0\)

\(\Leftrightarrow3b^2+6b+3=0\Rightarrow3\left(b+1\right)^2=0\Rightarrow b=-1\)

\(\Rightarrow\sqrt[3]{x-1}=-1\Rightarrow x=0\)

13 tháng 2 2020

a) ĐKXD:...

\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)

Đến đây dễ rồi

13 tháng 2 2020

bước đầu bạn làm sai r. nó nằm trong căn nên ko phải bình phương nên ko thể biến đổi thành tổng bình phương được

30 tháng 11 2019

Violympic toán 9

1 tháng 12 2019

Violympic toán 9

giải pt: \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) làm thế này mà chả hiểu sao lại bị gạch, ai biết chỉ với, cảm ơn nak: + ĐK:\(\left\{{}\begin{matrix}x\ge1\\x+3-4\sqrt{x-1}\ge0\\x+8-6\sqrt{x-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow x\ge1\) + pt đã cho \(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\) \(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\) (*) Th1:...
Đọc tiếp

giải pt: \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

làm thế này mà chả hiểu sao lại bị gạch, ai biết chỉ với, cảm ơn nak:

+ ĐK:\(\left\{{}\begin{matrix}x\ge1\\x+3-4\sqrt{x-1}\ge0\\x+8-6\sqrt{x-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)

+ pt đã cho \(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\) (*)

Th1: \(\left\{{}\begin{matrix}\sqrt{x-1}-2< 0\\\sqrt{x-1}-3< 0\end{matrix}\right.\)

(*) \(\Leftrightarrow2-\sqrt{x-1}+3-\sqrt{x-1}=1\Leftrightarrow2\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=2\Leftrightarrow x=5\left(N\right)\)

Th2: \(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\ge0\end{matrix}\right.\)

(*) \(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=1\Leftrightarrow2\sqrt{x-1}=6\Leftrightarrow\sqrt{x-1}=3\Leftrightarrow x=10\left(N\right)\)

Th3: \(\sqrt{x-1}-3< 0\le\sqrt{x-1}-2\)

(*) \(\Leftrightarrow\sqrt{x-1}-2+3-\sqrt{x-1}=1\Leftrightarrow1=1\left(đúng\right)\)

Kl: \(x\ge1\)

3
25 tháng 7 2017

sai là đúng rồi , bạn thử thay x = 2 vô xem thấy liền ah

25 tháng 7 2017

Cold Wind cx dạng bài đó nhưng t làm cách khác u (-_-)

https://hoc24.vn/hoi-dap/question/402888.html

chỗ câu b ah ~~~ cái bảng xét dấu ý (^~^) thử lại bài này vs cách đó xem ntn???

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok

Bài 1: 

a: \(=\left|5-\sqrt{3}\right|-\left|\sqrt{3}-2\right|\)

\(=5-\sqrt{3}-2+\sqrt{3}=3\)

b; \(B=\dfrac{\left(2-\sqrt{3}\right)\cdot\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\cdot\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\cdot\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)

\(=\dfrac{6\sqrt{3}+10-9-5\sqrt{3}-6\sqrt{3}+10-9+5\sqrt{3}}{\sqrt{2}}\)

\(=\dfrac{20-18}{\sqrt{2}}=\sqrt{2}\)

c: \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3+3-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}=1\)

d: \(A=\left(\sqrt{5}-1\right)\cdot\sqrt{6+2\sqrt{5}}\)

\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)

27 tháng 4 2020

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)

Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)

Lũy thừa 6 cả 2 vế lên PT tương đương:

\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)

Cái ngoặc to vô nghiệm vì nó tương đương:

\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))

Vậy x = 3.

PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra

25 tháng 4 2020

@Akai Haruma, @Nguyễn Việt Lâm

giúp em vs ạ! Cần gấp ạ

em cảm ơn nhiều!