K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

\(\sqrt{4x^2-4x+1}=x-16\)

\(\sqrt{\left(2x-1\right)^2}=x-16\)

\(\left|2x-1\right|\) = \(x-16\)

\(\left[{}\begin{matrix}2x-1=x-16\\2x-1=16-x\end{matrix}\right.\)

\(\left[{}\begin{matrix}2x-x=-16+1\\2x+x=16+1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-15\\x=\dfrac{17}{3}\end{matrix}\right.\)

Vậy \(S=\left\{-15;\dfrac{17}{3}\right\}\)

20 tháng 10 2018

Ta có: \(4x^2-4x+1=\left(2x-1\right)^2\ge0\forall x\)

ĐKXĐ: Với mọi giá trị thực của x.

\(\sqrt{4x^2-4x+1}=x-16\) (1)

\(\Leftrightarrow\) \(\sqrt{\left(2x-1\right)^2}=x-16\)

\(\Leftrightarrow\) \(\left|2x-1\right|=x-16\) (2)

- Nếu \(x\ge\dfrac{1}{2}\), hay \(2x-1\ge0\) thì ta có:

(2) \(\Leftrightarrow\) \(2x-1=x-16\)

\(\Leftrightarrow\) \(x=-15\) (loại vì \(x\ge\dfrac{1}{2}\) )

- Nếu \(x< \dfrac{1}{2}\), hay \(2x-1< 0\) thì ta có:

(2) \(\Leftrightarrow\) \(1-2x=x-16\)

\(\Leftrightarrow\) \(3x=17\)

\(\Leftrightarrow\) \(x=\dfrac{17}{3}\) (loại vì \(x< \dfrac{1}{2}\) )

Vậy phương trình (1) vô nghiệm.

22 tháng 11 2015

ak,,,,,,,còn mỗi bước GPT nghiệm nguyên nữa mà mãi ko ra

24 tháng 12 2015

PT <=> \(\sqrt{4x^2-14x+16}-\text{ }\sqrt{x^2-4x+5}=x-1\)

Đẽ thấy x = 1 không là n* của pt . Chia cả hai vế cho x - 1 

pt  <=> \(\sqrt{\frac{4x^2-14x+16}{x^2-2x+1}}-\sqrt{\frac{x^2-4x+5}{x^2-2x+1}}=1\)

    <=> \(\sqrt{\frac{4\left(x^2-2x+1\right)+12-6x}{x^2-2x+1}}-\sqrt{\frac{x^2-2x+1+4-2x}{x^2-2x+1}}=1\)

     <=> \(\sqrt{4+\frac{12-6x}{x^2-2x+1}}-\sqrt{1+\frac{4-2x}{x^2-2x+1}}=1\)

Đặt \(\sqrt{4+\frac{12-6x}{x^2-2x+1}}=a;\sqrt{1+\frac{4-2x}{x^2-2x+1}}=b\) (a;b > 0 ) ta có hpt 

\(\int^{a^2-3b^2=4+\frac{12-6x}{x^2-2x+1}-3-\frac{12-6x}{x^2-2x+1}=1}_{a-b=1}\)

Tự giải 

 

12 tháng 8 2019

Câu 1 :

Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý) 

Vậy pt vô nghiệm

Câu 2 : 

\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)

Vậy x=-1

Câu 3 : 

\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)

Câu 4 : 

\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x=15\)

21 tháng 10 2018

a) Đk: \(\hept{\begin{cases}x^2-4x+1\ge0\\x+1\ge0\end{cases}}\)

\(\sqrt{x^2-4x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2-4x+1=x+1\)

\(\Leftrightarrow x^2-4x-x=0\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)thỏa mãn điều kiện

Vậy x=0 hoặc x=5

2)\(\sqrt{\left(x-1\right)\left(x-3\right)}+\sqrt{x-1}=0\)(1)

Đk: x>=3 hoặc x=1

pt  (1)<=> \(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

<=> \(\sqrt{x-1}=0\)(vì\(\sqrt{x-3}+1>0\)mọi x )

<=> x-1=0

<=> x=1 ( thỏa mãn điều kiện)

NV
13 tháng 8 2020

ĐKXĐ: \(-\frac{16}{3}\le x\le4\)

\(\Leftrightarrow3x^2-12x+36=12\sqrt{4-x}+3\sqrt{3x+16}\)

\(\Leftrightarrow3x^2-9x+4\left(6-x-3\sqrt{4-x}\right)+\left(x+12-3\sqrt{3x+16}\right)=0\)

\(\Leftrightarrow3\left(x^2-3x\right)+\frac{4\left(x^2-3x\right)}{6-x+3\sqrt{4-x}}+\frac{x^2-3x}{x+12+3\sqrt{3x+16}}=0\)

\(\Leftrightarrow\left(x^2-3x\right)\left(3+\frac{4}{6-x+3\sqrt{4-x}}+\frac{1}{x+12+3\sqrt{3x+16}}\right)=0\)

\(\Leftrightarrow x^2-3x=0\)

15 tháng 8 2016

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

\(\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=16-\sqrt{x-1}\)

\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

\(\sqrt{x-1}\left(6-3-2+1\right)=16\)

\(2\sqrt{x-1}=16\)

\(\sqrt{x-1}=8\)

\(\left(\sqrt{x-1}\right)^2=8^2\)

\(x-1=64\)

\(x=64+1=65\)

15 tháng 8 2016

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)ĐK x lớn hơn hoặc bằng 1

\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

\(2\sqrt{x-1}=16\)

\(\sqrt{x-1}=8\)

\(x-1=64\)

\(x=65\)thỏa mãn

16 tháng 10 2020

PT \(\Leftrightarrow x^2-2x+1=4x^2-4x+1\)

\(\Leftrightarrow3x^2-2x=0\)

\(\Leftrightarrow x\left(3x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;\frac{2}{3}\right\}\)