K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

đề có thiếu không bạn ơi

2 tháng 5 2020

Sửa đề thành : \(5x^2-x.4\left(m+1\right)+2=0\)

\(< =>5x^2-x\left(4m+4\right)+2=0\)

Ta có \(\Delta=\left[-\left(4m+4\right)\right]^2-4.5.1=4m^2+2.4m.4+4^2-20\)

\(=4m^2+32m-4=4\left(m^2+8m-1\right)\)

đến đây thì xin quỳ :))

a) Thay m=0 vào phương trình \(x^2-2\left(m+1\right)+2m-15=0\), ta có: \(x^2-2\cdot\left(0+1\right)+2\cdot0-15=0\)

\(\Leftrightarrow x^2-17=0\)

\(\Leftrightarrow x^2=17\)

hay \(x=\pm\sqrt{17}\)

NV
3 tháng 6 2020

\(\Delta'=\left(m+1\right)^2-\left(2m-15\right)=m^2+16>0;\forall m\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-15\end{matrix}\right.\)

Kết hợp Viet và đề bài ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\5x_1+x_2=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m+2\\4x_1=-2m+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{-m+1}{2}\\x_2=\frac{5m+3}{2}\end{matrix}\right.\)

Thay vào \(x_1x_2=2m-15\)

\(\Rightarrow\left(\frac{-m+1}{2}\right)\left(\frac{5m+3}{2}\right)=2m-15\)

\(\Leftrightarrow-5m^2+2m+3=8m-60\)

\(\Leftrightarrow5m^2+6m-63=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\frac{21}{5}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 5:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m-1)^2-m^2\geq 0$

$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$

$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)

Khi đó:

$(x_1-x_2)^2+6m=x_1-2x_2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$

$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$

$\Leftrightarrow 4m-6=3x_2$

$\Leftrightarrow x_2=\frac{4}{3}m-2$

$x_1=2(m-1)-x_2=\frac{2}{3}m$

Suy ra:

$x_1x_2=m^2$

$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$

$\Leftrightarrow m(8m-12-9m)=0$

$\Leftrightarrow m(-m-12)=0$

$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 4:

Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$

$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)

Khi đó:

$2x_1^2+4mx_2+2m^2-1\geq 0$

$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$

$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$

$\Leftrightarrow 4m. 2\geq 0$

$\Leftrightarrow m\geq 0$

Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.

AH
Akai Haruma
Giáo viên
26 tháng 2 2019

Câu 1:

Trước hết để pt có 2 nghiệm (phân biệt) thì:

\(\Delta'=6^2-2(2m-1)>0\)

\(\Leftrightarrow m< \frac{19}{2}\)

Khi đó, với $x_1,x_2$ là 2 nghiệm của pt, áp dụng định lý Vi-et ta có: \(x_1+x_2=6\)

Nếu PT có 2 nghiệm đều nhỏ hơn $1$ thì $x_1+x_2<2$ (mâu thuẫn với điều trên)

Do đó không tồn tại $m$ để pt có 2 nghiệm đều nhỏ hơn $1$

AH
Akai Haruma
Giáo viên
26 tháng 2 2019

Câu 2:

Trước tiên để pt có 2 nghiệm phân biệt thì:

\(\Delta=5^2-4(m+4)>0\)

\(\Leftrightarrow m< \frac{9}{4}\)

Khi đó, áp dụng định lý Vi-et ta có:\(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=m+4\end{matrix}\right.\)

a)

\(3=|x_1-x_2|=\sqrt{(x_1-x_2)^2}\)

\(\Leftrightarrow 3=\sqrt{x_1^2-2x_1x_2+x_2^2}\)

\(\Leftrightarrow 3=\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{25-4(m+4)}\)

\(\Leftrightarrow 25-4(m+4)=9\Leftrightarrow m=0\) (thỏa mãn)

b)

\(|x_1|+|x_2|=4\)

\(\Leftrightarrow |5-x_2|+|x_2|=4\)

Ta luôn có BĐT \(4=|5-x_2|+|x_2|\geq |5-x_2+x_2|=5\Rightarrow 4\geq 5\) (vô lý)

Do đó không tồn tại $m$ thỏa mãn điều kiện đã cho.

AH
Akai Haruma
Giáo viên
30 tháng 4 2020

Lời giải:
Để pt có 2 nghiệm phân biệt thì:

$\Delta=25-(m+4)>0\Leftrightarrow m< 21$

Áp dụng định lý Vi-et với $x_1,x_2$ là nghiệm của pt thì: \(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=m+4\end{matrix}\right.\)

Khi đó:

$x_1(1-3x_2)+x_2(1-3x_1)=m^2-23$

$\Leftrightarrow (x_1+x_2)-6x_1x_2=m^2-23$

$\Leftrightarrow 5-6(m+4)=m^2-23$

$\Leftrightarrow m^2+6m-4=0$
$\Rightarrow m=-3\pm \sqrt{13}$ (đều thỏa mãn)

Vậy............