Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=0 vào phương trình \(x^2-2\left(m+1\right)+2m-15=0\), ta có: \(x^2-2\cdot\left(0+1\right)+2\cdot0-15=0\)
\(\Leftrightarrow x^2-17=0\)
\(\Leftrightarrow x^2=17\)
hay \(x=\pm\sqrt{17}\)
\(\Delta'=\left(m+1\right)^2-\left(2m-15\right)=m^2+16>0;\forall m\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-15\end{matrix}\right.\)
Kết hợp Viet và đề bài ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\5x_1+x_2=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m+2\\4x_1=-2m+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{-m+1}{2}\\x_2=\frac{5m+3}{2}\end{matrix}\right.\)
Thay vào \(x_1x_2=2m-15\)
\(\Rightarrow\left(\frac{-m+1}{2}\right)\left(\frac{5m+3}{2}\right)=2m-15\)
\(\Leftrightarrow-5m^2+2m+3=8m-60\)
\(\Leftrightarrow5m^2+6m-63=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\frac{21}{5}\end{matrix}\right.\)
Bài 5:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m-1)^2-m^2\geq 0$
$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$
$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)
Khi đó:
$(x_1-x_2)^2+6m=x_1-2x_2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$
$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$
$\Leftrightarrow 4m-6=3x_2$
$\Leftrightarrow x_2=\frac{4}{3}m-2$
$x_1=2(m-1)-x_2=\frac{2}{3}m$
Suy ra:
$x_1x_2=m^2$
$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$
$\Leftrightarrow m(8m-12-9m)=0$
$\Leftrightarrow m(-m-12)=0$
$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.
Bài 4:
Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$
$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)
Khi đó:
$2x_1^2+4mx_2+2m^2-1\geq 0$
$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$
$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$
$\Leftrightarrow 4m. 2\geq 0$
$\Leftrightarrow m\geq 0$
Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.
Câu 1:
Trước hết để pt có 2 nghiệm (phân biệt) thì:
\(\Delta'=6^2-2(2m-1)>0\)
\(\Leftrightarrow m< \frac{19}{2}\)
Khi đó, với $x_1,x_2$ là 2 nghiệm của pt, áp dụng định lý Vi-et ta có: \(x_1+x_2=6\)
Nếu PT có 2 nghiệm đều nhỏ hơn $1$ thì $x_1+x_2<2$ (mâu thuẫn với điều trên)
Do đó không tồn tại $m$ để pt có 2 nghiệm đều nhỏ hơn $1$
Câu 2:
Trước tiên để pt có 2 nghiệm phân biệt thì:
\(\Delta=5^2-4(m+4)>0\)
\(\Leftrightarrow m< \frac{9}{4}\)
Khi đó, áp dụng định lý Vi-et ta có:\(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=m+4\end{matrix}\right.\)
a)
\(3=|x_1-x_2|=\sqrt{(x_1-x_2)^2}\)
\(\Leftrightarrow 3=\sqrt{x_1^2-2x_1x_2+x_2^2}\)
\(\Leftrightarrow 3=\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{25-4(m+4)}\)
\(\Leftrightarrow 25-4(m+4)=9\Leftrightarrow m=0\) (thỏa mãn)
b)
\(|x_1|+|x_2|=4\)
\(\Leftrightarrow |5-x_2|+|x_2|=4\)
Ta luôn có BĐT \(4=|5-x_2|+|x_2|\geq |5-x_2+x_2|=5\Rightarrow 4\geq 5\) (vô lý)
Do đó không tồn tại $m$ thỏa mãn điều kiện đã cho.
Lời giải:
Để pt có 2 nghiệm phân biệt thì:
$\Delta=25-(m+4)>0\Leftrightarrow m< 21$
Áp dụng định lý Vi-et với $x_1,x_2$ là nghiệm của pt thì: \(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=m+4\end{matrix}\right.\)
Khi đó:
$x_1(1-3x_2)+x_2(1-3x_1)=m^2-23$
$\Leftrightarrow (x_1+x_2)-6x_1x_2=m^2-23$
$\Leftrightarrow 5-6(m+4)=m^2-23$
$\Leftrightarrow m^2+6m-4=0$
$\Rightarrow m=-3\pm \sqrt{13}$ (đều thỏa mãn)
Vậy............
đề có thiếu không bạn ơi
Sửa đề thành : \(5x^2-x.4\left(m+1\right)+2=0\)
\(< =>5x^2-x\left(4m+4\right)+2=0\)
Ta có \(\Delta=\left[-\left(4m+4\right)\right]^2-4.5.1=4m^2+2.4m.4+4^2-20\)
\(=4m^2+32m-4=4\left(m^2+8m-1\right)\)
đến đây thì xin quỳ :))