Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm ra thì dài quá mk ko còn nhiều t/g
bn Áp dụng HĐT a2-b2=(a+b)(a-b) đi
Đ/a: a)x1=2;x2=6;x3,4=\(\frac{-2\pm\sqrt{452}}{14}\)
b)x1=-1;x2=1/2;x3,4=\(\frac{-2\pm\sqrt{8}}{2}\)
c)x=-5/4;x=1/2
a) (2x + 1)(3x - 2) = (5x - 8)(2x + 1)
<=> 6x2 - x - 2 = 10x2 - 11x - 8
<=> 6x2 - 10x2 - x + 11x -2 + 8 = 0
<=> -4x2 + 10x + 6 = 0
<=> -2 (2x2 - 5x - 3) = 0
<=> 2x2 - 5x - 3 = 0
<=> 2x2 - 6x + x - 3 = 0
<=> x (2x + 1) - 3 (2x + 1) = 0
<=> (x - 3) (2x + 1) = 0
* x - 3 = 0 => x = 3
* 2x + 1 = 0 => x = -1/2
S = {-1/2; 3}
b) 4x2 – 1 = (2x +1)(3x -5)
<=> 4x2 – 1 - (2x +1)(3x -5) = 0
<=> (2x - 1) (2x + 1) - (2x + 1)(3x - 5) = 0
<=> (2x + 1) (2x - 1 - 3x + 5) = 0
<=> (2x + 1) (-x + 4) = 0
* 2x + 1 = 0 <=> x = -1/2
* -x + 4 = 0 <=> x = 4
S = {-1/2; 4}
c) (x + 1)2 = 4(x2 – 2x + 1)
<=> (x + 1)2 - 4(x2 – 2x + 1) = 0
<=> (x + 1)2 - 4(x2 – 1)2 = 0
* (x + 1)2 = 0 <=> x = -1
* 4(x2 - 1)2 = 0 <=> x = 1 và x = -1
S = {-1; 1}
d) 2x3 + 5x2 – 3x = 0
<=> x (2x2 + 5x - 3) = 0
<=> x (2x2 + 6x - x - 3) = 0
<=> x [x(2x - 1) + 3 (2x - 1)] = 0
<=> x (2x - 1) (x + 3) = 0
* x = 0
* 2x - 1 = 0 <=> x = 1/2
* x + 3 = 0 <=> x = -3
S = { -3; 0; 1/2}
a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)
Thế vào rồi giải tiếp em nhé.
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)ĐKXĐ : \(x\ne\pm4\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)
\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2-11x+9x=4-4+80-96\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\)( t/m )
Vậy....
Ta chứng minh tính chất sau: với các số thực \(a;b;c\) sao cho \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)
Thật vậy ta có: \(a+b+c=0\Rightarrow a+b=-c\)
\(a^3+b^3+c^3+3ab\left(a+b\right)-3ab\left(a+b\right)=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left(\left(a+b^2\right)-\left(a+b\right)c+c^2\right)-3ab\left(-c\right)\)
\(=-3ab\left(-c\right)=3abc\) (đpcm)
Áp dụng cho bài toán:
\(\left(x^2-3x+2\right)^3-x^6+\left(3x-2\right)^3=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)^3+\left(-x^2\right)^3+\left(3x-2\right)^3=0\) (1)
Do \(x^2-3x+2+\left(-x^2\right)+3x-2=0\)
\(\Rightarrow\left(x^2-3x+2\right)^3+\left(-x^2\right)^3+\left(3x-2\right)^3=3\left(x^2-3x+2\right)\left(-x^2\right)\left(3x-2\right)\)
Phương trình (1) trở thành:
\(\left(x^2-3x+2\right)\left(-x^2\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\-x^2=0\\3x-2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\\x=\frac{2}{3}\end{matrix}\right.\)
\(x^6-\left(3x-2\right)^3=\left(x^2-3x+2\right)\left[x^4+x^2\left(3x-2\right)+\left(3x-2\right)^2\right]\)
Nhân tử chung 2 vế: x^2-3x+2. Giải pt đó nha
(x+1)3 - (x-2)3 = (3x-1).(3x+1)
⇔ x3 + 3x2 + 3x + 1 - x3 + 6x2 - 12x + 8 = 9x2 - 1
⇔ 9x2 - 9x + 9 = 9x2 - 1
⇔ -9x = -10
⇔ x = \(\frac{10}{9}\)
S={\(\frac{10}{9}\)}
a) \(\left(x^2-3\right)^2=\left(x^2-1\right)^2\)
\(\left(x^2-3\right)^2-\left(x^2-1\right)^2=0\)
\(\left(x^2-3-x^2+1\right)\left(x^2-3+x^2-1\right)=0\)
\(-2\left(2x^2-4\right)=0\)
\(-2\times2\times\left(x^2-2\right)=0\)\(\Rightarrow x^2-2=0\)
\(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Rightarrow x=\sqrt{2}ho\text{ặc}x=-\sqrt{2}\)
b)\(4x^2\left(3x-7\right)=16\left(3x-7\right)\)
\(4x^2\left(3x-7\right)-16\left(3x-7\right)=0\)
\(\left(3x-7\right)\left(4x^2-16\right)=0\)
\(\left(3x-7\right)\left(2x-4\right)\left(2x+4\right)=0\)
\(\Rightarrow x=\frac{7}{3}ho\text{ặc}x=2ho\text{ặc}x=-2\)
\(\left(3x-2\right)\left(3x+8\right)\left(x+1\right)^2+16=0\)
\(\Leftrightarrow\left(9x^2+18x-16\right)\left(x^2+2x+1\right)+16=0\)
\(\Leftrightarrow\left[9\left(x^2+2x+1\right)-25\right]\left(x^2+2x+1\right)+16=0\)
Đặt \(x^2+2x+1=a\ge0\)
\(\left(9a-25\right)a+16=0\)
\(\Leftrightarrow9a^2-25a+16=0\)
\(\Rightarrow\left[{}\begin{matrix}a=1\\a=\frac{16}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+2x+1=1\\x^2+2x+1=\frac{16}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\left(x+2\right)=0\\\left(x+1\right)^2=\left(\frac{4}{3}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x+1=\frac{4}{3}\\x+1=-\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=\frac{1}{3}\\x=-\frac{7}{3}\end{matrix}\right.\)