Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy .................
b) \(\left(x-3\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+3\right)\left(2x+1+x-3\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ...............
c) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
P/s: tới đây bn tự giải tiếp nha
Tatsuya Yuuki( Team Megin Kawakuchi)
người ta đã dăng câu hỏi lên để mn giúp vì bán đấy k làm đc, mà mày tự nhiên nhảy vào bảo tự làm. Nếu mày đăng câu hỏi lên mà mn bảo m tự làm thì mày cảm thấy thế nào
x + 3x + 4x + 3x + 1 = 0
⇒x + x + 2x + 2x + 2x + 2x + x + 1 = 0
⇒x x + 1 + 2x x + 1 + 2x x + 1 + x + 1 = 0 ⇒ x + 1 x + x + x + x + x + 1 = 0 ⇒ x + 1 x x + 1 + x x + 1 + x + 1 = 0 ⇒ x + 1 x + 1 x + x + 1 = 0 ⇒ x + 1 x + x + 1 = 0 ⇒ x + 1 = 0 vix̀ + x + 1 ≠ 0 ⇒x + 1 = 0 ⇒x = −1 vậy pt có No ......... 3 2x − 3 − 6 x − 3 = 5 4x + 3 − 17 ⇔ 30 10 2x − 3 − 30 5 x − 3 = 30 6 4x + 3 − 30 17.30 ⇔20x − 30 − 5x + 15 = 24x + 18 − 510 ⇔20x − 5x − 24x = 18 − 510 + 30 − 15
⇔− 9x = −477 ⇔x = 53
vậy pt có No........
\(x^4+3x^3+4x^2+3x+1=0\)
\(\Rightarrow x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0\)
\(\Rightarrow x^3\left(x+1\right)+2x^2\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^3+x^2+x^2+x+x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left[x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\right]=0\)
\(\Rightarrow\left(x+1\right)\left(x+1\right)\left(x^2+x+1\right)=0\)
\(\Rightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)
\(\Rightarrow\left(x+1\right)^2=0\left(vìx^2+x+1\ne0\right)\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
vậy pt có No .........
\(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)
\(\Leftrightarrow\frac{10\left(2x-3\right)}{30}-\frac{5\left(x-3\right)}{30}=\frac{6\left(4x+3\right)}{30}-\frac{17.30}{30}\)
\(\Leftrightarrow20x-30-5x+15=24x+18-510\)
\(\Leftrightarrow20x-5x-24x=18-510+30-15\)
\(\Leftrightarrow-9x=-477\)
\(\Leftrightarrow x=53\)
vậy pt có No........
(x+1)3 - (x-2)3 = (3x-1).(3x+1)
⇔ x3 + 3x2 + 3x + 1 - x3 + 6x2 - 12x + 8 = 9x2 - 1
⇔ 9x2 - 9x + 9 = 9x2 - 1
⇔ -9x = -10
⇔ x = \(\frac{10}{9}\)
S={\(\frac{10}{9}\)}
a/ (x+5)(3x+2)^2=x^2(x+5)
(x+5)(9x^2+12x+4)=x^2(x+5)
9x^3+12x^2+4x+45x^2+60x+20=x^3+5x^2
9x^3-x^3+12x^2+45x^2-5x^2+4x+60x=-20
8x^3+52x^2+64x+20=0
........................
Ta có
Pt <=> x3+6x2+12x+8+9x2-1=x3+3x2+3x+1
<=> 12x2+9x+6=0
<=> 3(4x2+3x+2)=0
<=> \(3\left(4x^2+2.\frac{3}{4}.2x+2\right)=0\)
\(\Leftrightarrow3\left[\left(2x+\frac{3}{4}\right)^2+\frac{23}{16}\right]=0\)
\(\Leftrightarrow3\left(2x+\frac{3}{4}\right)^2+\frac{69}{16}=0\)vô lý vì \(3\left(2x+\frac{3}{4}\right)^2\ge0\Rightarrow3\left(2x+\frac{3}{4}\right)^2+\frac{69}{16}\ge\frac{69}{16}>0\)
Vậy pt vô ghiệm
a, \(\frac{x+9}{x^2-3x-10}-\frac{x+15}{x^2-25}=\frac{1}{x+2}\left(ĐKXĐ:x\ne\pm2;\pm5\right)\)
\(\frac{x+9}{\left(x-5\right)\left(x+2\right)}-\frac{x+15}{\left(x+5\right)\left(x-5\right)}=\frac{1}{x+2}\)
\(\frac{\left(x+9\right)\left(x+5\right)}{\left(x-5\right)\left(x+2\right)\left(x+5\right)}-\frac{\left(x+15\right)\left(x+2\right)}{\left(x+5\right)\left(x-5\right)\left(x+2\right)}=\frac{\left(x+5\right)\left(x-5\right)}{\left(x+2\right)\left(x+5\right)\left(x-5\right)}\)
Khử mẫu : \(\left(x+9\right)\left(x+5\right)-\left(x+15\right)\left(x+2\right)=\left(x+5\right)\left(x-5\right)\)
\(x^2+14x+45-x^2-17x-30=x^2-25\)
\(-3x+15-x^2+25=0\)
\(-3x-x^2+40=0\)( giải delta ta đc )
\(x_1=-5;x_2=8\)
b, \(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{3x^2-4x+1}=1ĐKXĐ\left(x\ne1;\frac{1}{3}\right)\)
\(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{\left(3x-1\right)\left(x-1\right)}=1\)
\(\frac{x-1}{\left(3x-1\right)\left(x-1\right)}+\frac{\left(2x+2\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}-\frac{3x^2+1}{\left(3x-1\right)\left(x-1\right)}=\frac{\left(3x-1\right)\left(x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)
Khửi mẫu \(x-1+\left(2x+2\right)\left(3x-1\right)-3x^2-1=\left(3x-1\right)\left(x-1\right)\)( bn tự nốt nhé)
c, \(\left(x+3\right)^2-10\ge\left(x+3\right)\left(x+2\right)-4\)
\(x^2+6x+9-10\ge x^2+5x+6-4\)
\(x-3\ge0\Leftrightarrow x\ge3\)
a) \(\frac{x+9}{x^2-3x-10}-\frac{x+15}{x^2-25}=\frac{1}{x+2}\); ĐKXĐ: x # -2; x # +-5
<=> \(\frac{x+9}{\left(x+2\right)\left(x-5\right)}-\frac{x+15}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+2}\)
<=> \(\frac{\left(x+9\right)\left(x+5\right)-\left(x+15\right)\left(x+2\right)}{\left(x+2\right)\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)\left(x+5\right)}{\left(x+2\right)\left(x-5\right)\left(x+5\right)}\)
<=> (x + 9)(x + 5) - (x + 15)(x + 2) = (x - 5)(x + 5)
<=> -3x + 15 = x^2 - 25
<=> -3x + 15 - x^2 + 25 = 0
<=> -3x + 40 - x^2 = 0
<=> x^2 + 3x - 40 = 0
<=> (x - 5)(x + 8) = 0
<=> x - 5 = 0 hoặc x + 8 = 0
<=> x = 5 (ktm0 hoặc x = -8 (tm)
b) \(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{3x^2-4x+1}=1\); ĐKXĐ: x # 1/3; x # 1
<=> \(\frac{1}{3x-1}+\frac{2\left(x+1\right)}{x-1}-\frac{3x^2+1}{x\left(3x-1\right)-\left(3x-1\right)}=1\)
<=> \(\frac{1}{3x-1}+\frac{2\left(x+1\right)}{x-1}-\frac{3x^2+1}{\left(x-1\right)\left(3x-1\right)}=1\)
<=> \(\frac{x-1}{\left(x-1\right)\left(3x-1\right)}+\frac{2\left(x+1\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}-\frac{3x^2+1}{\left(x-1\right)\left(3x-1\right)}=\frac{\left(x-1\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}\)
<=> x - 1 + 2(x + 1)(3x - 1) - 3x^2 + 1 = (x - 1)(3x - 1)
<=> 5x - 4 + 3x^2 = 3x^2 - 4x + 1
<=> 5x - 4 = -4x + 1
<=> 5x + 4x = 1 + 4
<=> 9x = 5
<=> x = 5/9 (tm)
c) (x + 3)^2 - 10 >= (x + 3)(x + 2) - 4
<=> x^2 + 3x + 3x + 9 - 10 >= x^2 + 2x + 3x + 6 - 4
<=> x^2 + 6x + 9 - 10 >= x^2 + 5x + 6 - 4
<=> x^2 + 6x - 1 >= x^2 + 5x + 2
<=> x^2 + 6x - 1 - x^2 - 5x - 2 >= 0
<=> x - 3 >= 0
<=> x >= 3
Ta chứng minh tính chất sau: với các số thực \(a;b;c\) sao cho \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)
Thật vậy ta có: \(a+b+c=0\Rightarrow a+b=-c\)
\(a^3+b^3+c^3+3ab\left(a+b\right)-3ab\left(a+b\right)=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left(\left(a+b^2\right)-\left(a+b\right)c+c^2\right)-3ab\left(-c\right)\)
\(=-3ab\left(-c\right)=3abc\) (đpcm)
Áp dụng cho bài toán:
\(\left(x^2-3x+2\right)^3-x^6+\left(3x-2\right)^3=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)^3+\left(-x^2\right)^3+\left(3x-2\right)^3=0\) (1)
Do \(x^2-3x+2+\left(-x^2\right)+3x-2=0\)
\(\Rightarrow\left(x^2-3x+2\right)^3+\left(-x^2\right)^3+\left(3x-2\right)^3=3\left(x^2-3x+2\right)\left(-x^2\right)\left(3x-2\right)\)
Phương trình (1) trở thành:
\(\left(x^2-3x+2\right)\left(-x^2\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\-x^2=0\\3x-2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\\x=\frac{2}{3}\end{matrix}\right.\)
\(x^6-\left(3x-2\right)^3=\left(x^2-3x+2\right)\left[x^4+x^2\left(3x-2\right)+\left(3x-2\right)^2\right]\)
Nhân tử chung 2 vế: x^2-3x+2. Giải pt đó nha