Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>\(\sqrt{\left(x+3\right)^2}\)+ \(\sqrt{\left(x+4\right)^2}\)+\(\sqrt{\left(x+5\right)^2}\)=9x
=> x + 3 + x + 4 + x + 5 = 9x
=> - 6x = - 12
=> x=2
Ủa sao phá đc trị tuyệt đối hay v bạn? (căn a^2 = trị tuyệt đối của a )
\(\sqrt{x2+x+25}\) + \(\sqrt{x2+x+16}\)=9
=\(\sqrt{ }\)(x+5)2 +\(\sqrt{ }\)(x+4)2=9
= /x+5/ +/x+4/ =9
= x+5+x+4 =9
= 2x+9=9
= 2x=9-9
=2x=0
x= 0:2
x=0
vậy x = 0
Điều kiện: mọi \(x\in R\)
Ta có \(\sqrt{x^2+x+25}=\sqrt{x^2+x+9}+2\)
\(\Leftrightarrow x^2+x+25=x^2+x+9+4.\sqrt{x^2+x+9}+4\)
\(\Leftrightarrow\sqrt{x^2+x+9}=3\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(a,\sqrt{x+1}=\sqrt{2-x}\)
\(\Rightarrow x+1=2-x\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
a) \(ĐKXĐ:-1\le x\le2\)
Bình phương 2 vế ta có:
\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )
Vậy \(x=\frac{1}{2}\)
b) \(ĐKXĐ:x\ge1\)
\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)
\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )
Vậy \(x=65\)
c) \(ĐKXĐ:x\ge1\)
\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )
Vậy \(x=5\)
\(\sqrt{x^2-9}=1\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\Leftrightarrow x-3=1\Leftrightarrow x=1+3\Leftrightarrow x=4\)Vay x=4
\(\sqrt{16-x^2}=2\Leftrightarrow\sqrt{\left(4-x\right)^2}=2\Leftrightarrow4-x=2\Leftrightarrow x=4-2\Leftrightarrow x=2\)Vay x=2
Đặt \(\hept{\begin{cases}\sqrt{x^2+x+25}=a\ge0\\\sqrt{x^2+x+16}=b\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=9\\a^2-b^2=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=9\\\left(a+b\right)\left(a-b\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=9\\a-b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=5\\b=4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+25}=5\\\sqrt{x^2+x+16}=4\end{cases}}\)
\(\Rightarrow x^2+x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Đặt \(t=x^2+x+16>0\)
pt trên đc viết lại thành
\(\sqrt{t+9}+\sqrt{t}=9\)
\(\Leftrightarrow t+9+t+2\sqrt{t\left(t+9\right)}=81\)
\(\Leftrightarrow2\sqrt{t\left(t+9\right)}=72-t\)
\(\Leftrightarrow\hept{\begin{cases}72-t>0\\4t\left(t+9\right)=\left(72-t\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}t< 72\\3t^2+180t-5184=0\end{cases}}\)
\(\Leftrightarrow t=-30+6\sqrt{73}\) (vì t > 0)
Thử lại thấy ko thỏa mãn
Vậy pt vô nghiệm.