Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a)9x2 - 3 = ( 3x + 1 )( 2x - 3 )
<=> 9x2 - 3 = 6x2 - 7x - 3
<=> 3x2 + 7x = 0
<=> x( 3x + 7 ) = 0
<=> x = 0 hoặc x = -7/3
b) 6x2 - 13x + 6 = 0
<=> 6x2 - 9x - 4x + 6 = 0
<=> 3x( 2x - 3 ) - 2( 2x - 3 ) = 0
<=> ( 2x - 3 )( 3x - 2 ) = 0
<=> x = 3/2 hoặc x = 2/3
c) \(\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}\)( ĐKXĐ : x ≠ ±1 )
<=> \(\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-3x-2}{\left(x-1\right)\left(x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
=> 3x + 3 = -3x - 2 - 4x + 4
<=> 10x = -1 <=> x = -1/10 (tm)
a, \(9x^2-3=\left(3x+1\right)\left(2x-3\right)\Leftrightarrow9x^2-3=6x^2-9x+2x-3\)
\(\Leftrightarrow9x^2-3=6x^2-7x-3\Leftrightarrow3x^2+7x=0\Leftrightarrow x\left(3x+7\right)=0\Leftrightarrow x=0;x=-\frac{7}{3}\)
Vậy tập nghiệm của phương trình là S = { -7/3 ; 0 }
b, \(6x^2-13x+6=0\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=0\Leftrightarrow x=\frac{2}{3};x=\frac{3}{2}\)
Vậy tập nghiệm của phương trình là S = { 2/3 ; 3/2 }
c, \(\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}ĐK:x\ne\pm1\)
\(\Leftrightarrow\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-3x-2}{\left(x-1\right)\left(x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow3x+3=-3x-2-4x+4\Leftrightarrow3x+3=-7x+2\)
\(\Leftrightarrow10x=-1\Leftrightarrow x=-\frac{1}{10}\)Vậy tập nghiệm của phương trình là S = { -1/10 }
a) x^4 - 3x^3 + 3x - 1 = 0
<=> (x^3 - 2x^2 - 2x + 1)(x - 1) = 0
<=> (x^3 - 3x + 1)(x + 1)(x - 1) = 0
<=> x^3 - 3x + 1 khác 0 hoặc x + 1 = 0 hoặc x - 1 = 0
<=> x + 1 = 0 hoặc x - 1 = 0
<=> x = -1 hoặc x = 1
a) Mạn phép sửa đề :
x4 - 3x3 + 4x2 - 3x + 1 = 0
⇔ x4 - x3 - 2x3 + 2x2 + 2x2 - 2x - x + 1 = 0
⇔ x3( x - 1) - 2x2( x - 1) + 2x( x - 1) - ( x - 1) = 0
⇔ ( x - 1)( x3 - 2x2 + 2x - 1) = 0
⇔ ( x - 1)[ ( x - 1)(x2 + x + 1) - 2x( x - 1)] = 0
⇔ ( x - 1)2( x2 - x + 1) = 0
Do : x2 - x + 1 \(=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\text{≥}\dfrac{3}{4}>0\text{∀}x\)
⇔ ( x - 1)2 = 0
⇔ x = 1
Vậy,....
b) 6x4 - x3 - 7x2 + x + 1 = 0
⇔ 6x4 + 6x3 - 7x3 - 7x2 + x + 1 = 0
⇔ 6x3( x + 1) - 7x2( x + 1) + x + 1 = 0
⇔ ( x + 1)( 6x3 - 7x2 + 1 ) = 0
⇔ ( x + 1)( 6x3 - 6x2 - x2 + 1 ) = 0
⇔ ( x + 1)[ 6x2( x - 1) -( x + 1)( x - 1)] = 0
⇔ ( x + 1)2( 6x2 - x - 1) = 0
⇔ ( x + 1)2( 6x2 - 3x + 2x - 1) = 0
⇔( x + 1)2[ 3x( 2x - 1) + 2x - 1] = 0
⇔( x + 1)2( 2x - 1)( 3x + 1) = 0
⇔ x = -1 ; x = \(\dfrac{1}{2}\) hoặc : x = \(\dfrac{-1}{3}\)
Vậy,....
\(x^4-3x^3-6x+4=0\)
<=>\(\left(x^4+x^3+2x^2\right)-\left(4x^3+4x^2+8x\right)+\left(2x^2+2x+4\right)=0\)
<=>\(x^2\left(x^2+x+2\right)-4x\left(x^2+x+2\right)+2\left(x^2+x+2\right)=0\)
<=>\(\left(x^2+x+2\right)\left(x^2-4x+2\right)=0\)<=>\(\orbr{\begin{cases}x^2+x+2=0\\x^2-4x+2=0\end{cases}}\)
+)\(x^2+x+2=0\)
\(x^2+x+2=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{7}{4}=\left(x+\frac{1}{4}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
=> ko có x thỏa mãn x2+x+2=0
+)\(x^2-4x+2=0\)
\(x^2-4x+2=x^2-4x+4-2=\left(x-2\right)^2-2=0\)
<=>\(\left(x-2\right)^2=2\)<=>\(\orbr{\begin{cases}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{2}+2\\x=2-\sqrt{2}\end{cases}}\)
Vậy tập nghiệm pt \(S=\left\{2-\sqrt{2};\sqrt{2}+2\right\}\)
b/ (12x + 7)2(3x + 2)(2x + 1) = 3
=> (144x2 + 168x + 49) (6x2 + 7x + 2) = 3
- Nhân 2 vế cho 24 ta đc:
(144x2 + 168x + 49) (144x2 + 168x + 48) = 72
- Đặt a = 144x2 + 168x + 48 , ta đc phương trình:
(a + 1).a = 72
=> a2 + a - 72 = 0
=> (a + 9)(a - 8) = 0
=> a = -9 hoặc a = 8
- Với a = -9 <=> 144x2 + 168x + 48 = -9 => 144x2 + 168x + 57 = 0 , mà 144x2 + 168x + 57 > 0 => pt vô nghiệm
- Với a = 8 <=> 144x2 + 168x + 48 = 8 => 144x2 + 168x + 40 = 0 => (3x + 1)(6x + 5) = 0 => x = -1/3 hoặc x = -5/6
Vậy x = -1/3 , x = -5/6
(3x + 1)2 - (3x - 1).(3x + 1) = 1
<=> (3x + 1).[(3x + 1) - (3x - 1)] = 1
<=> (3x + 1).(3x + 1 - 3x + 1) = 1
<=> (3x + 1).2 = 1
<=> 3x + 1 = 1/2
<=> 3x = -1/2
<=> x = -1/6
Vậy S = {-1/6}.
36x2 - 25 - x.(6x - 5) = 0
<=> (36x2 - 25) - x.(6x - 5) = 0
<=> [(6x)2 - 52] - x.(6x - 5) = 0
<=> (6x - 5).(6x + 5) - x.(6x - 5) = 0
<=> (6x - 5).(6x + 5 - x) = 0
<=> (6x - 5).(5x + 5) = 0
<=> 5.(6x - 5).(x + 1) = 0
<=> 6x - 5 = 0 hoặc x + 1 = 0
<=> x = 5/6 hoặc x = -1
Vậy S = {-1; 5/6}.
a)
\(\left(3x+1\right)^2-\left(3x-1\right)\left(3x+1\right)=1\)
\(\Rightarrow\left(9x^2+6x+1\right)-\left(9x^2-1\right)=1\)
\(\Rightarrow6x+2=1\)
\(\Rightarrow x=-\frac{1}{6}\)
Vậy pt có nghiệm là x = - 1 / 6
b)
\(36x^2-25-x\left(6x-5\right)=0\)
\(\Rightarrow\left(36x^2-25\right)-x\left(6x-5\right)=0\)
\(\Rightarrow\left(6x-5\right)\left(6x+5\right)-x\left(6x-5\right)=0\)
\(\Rightarrow\left(6x-5\right)\left(6x+5-x\right)=0\)
\(\Rightarrow\left(6x-5\right)\left(5x+5\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{5}{6}\\x=-1\end{array}\right.\)
Vậy pt có nghiệm là x = 5 / 6 ; x = - 1
(3x + 1)2 - (3x - 1).(3x + 1) = 1
<=> (3x + 1).[(3x + 1) - (3x - 1)] = 1
<=> (3x + 1).(3x + 1 - 3x + 1) = 1
<=> (3x + 1).2 = 1
<=> 3x + 1 = 1/2
<=> 3x = -1/2
<=> x = -1/6
Vậy S = {-1/6}.
36x2 - 25 - x.(6x - 5) = 0
<=> (36x2 - 25) - x.(6x - 5) = 0
<=> [(6x)2 - 52] - x.(6x - 5) = 0
<=> (6x - 5).(6x + 5) - x.(6x - 5) = 0
<=> (6x - 5).(6x + 5 - x) = 0
<=> (6x - 5).(5x + 5) = 0
<=> 5.(6x - 5).(x + 1) = 0
<=> 6x - 5 = 0 hoặc x + 1 = 0
<=> x = 5/6 hoặc x = -1
Vậy S = {-1; 5/6}.
Ta thấy x = 0 ko phải là nghiệm của pt => x khác 0
Chia cả 2 vế pt cho x^2 khác 0 ta được :
x^2-3x-6+3/x+1/x^2 = 0
<=> (x^2+1/x^2)-3.(x-1/x)-6 = 0
Đặt x-1/x = a => x^2+1/x^2 = a^2+2
pt trở thành :
a^2+2-3a-6 = 0
<=> a^2-3a-4 = 0
<=> (a^2+a)-(4a+4) = 0
<=> (a+1).(a-4) = 0
<=> a=-1 hoặc a=4
<=> x-1/x = -1 hoặc x-1/x = 4
Đến đó nhân cả 2 vế với x mà tìm x nha
Tk mk nha
x = 0 không là nghiệm của pt.
\(x\ne0\)
\(PT\Leftrightarrow x^2+\frac{1}{x^2}-3x+\frac{3}{x}+6=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2-3\left(x-\frac{1}{x}\right)+8=0\)<=> PT vô nghiệm