K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

\(x+\sqrt{9-x^2}-x\sqrt{9-x^2}=3\left(-3\le x\le3\right)\)

\(\Leftrightarrow\sqrt{9-x^2}-x\sqrt{9-x^2}=3-x\\ \Leftrightarrow9-x^2+x^2\left(9-x^2\right)-2x\sqrt{\left(9-x^2\right)^2}=9-6x+x^2\\ \Leftrightarrow9+8x^2-x^4-2x\left(9-x^2\right)=x^2-6x+9\\ \Leftrightarrow-x^4+2x^3+7x^2-12x=0\\ \Leftrightarrow-x\left(x^3-2x^2-7x+12\right)=0\Leftrightarrow-x\left(x^3-3x^2+x^2-3x-4x+12\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x^2+x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=3\left(N\right)\\x^2+x-4=0\left(1\right)\end{matrix}\right.\)

 \(\Delta\left(1\right)=1-4\left(-4\right)=17>0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1-\sqrt{17}}{2}\left(N\right)\\x=\dfrac{-1+\sqrt{17}}{2}\left(N\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;3;\dfrac{-1-\sqrt{17}}{2};\dfrac{-1+\sqrt{17}}{2}\right\}\)

Tick ✔

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

9 tháng 10 2020

\(pt\Leftrightarrow\sqrt{\left(x^4-9\right)+\left(x^3-3x\right)}+\sqrt{\left(x^4-9\right)+\left(2x^3-6x\right)}+\sqrt{x^2-3}=0\)

\(\Leftrightarrow\sqrt{\left(x^2-3\right)\left(x^2+x+3\right)}+\sqrt{\left(x^2-3\right)\left(x^2+2x+3\right)}+\sqrt{x^2-3}=0\)

\(\Leftrightarrow\sqrt{x^2-3}\left(\sqrt{x^2+x+3}+\sqrt{x^2+2x+3}+1\right)=0\)

\(\text{Nếu }x=\pm\sqrt{3}\Rightarrow\text{thỏa mãn còn lại thì thừa số số 2}>0\text{ nên không thỏa}\)

11 tháng 8 2018

a,\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}\) \(^2\)\(=0\)

 \(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)

 \(\Leftrightarrow\)\(x=3\)

b, \(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

    \(\Leftrightarrow\)\(x-1+x-2=3\)

   \(\Leftrightarrow\)\(2x=6\)

   \(\Leftrightarrow\)\(x=3\)

Nhớ k nhé

12 tháng 8 2018

mình viết thừa số 2 ở dòng 1 phần a 

19 tháng 8 2016

a) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)

Đặt \(t=\sqrt{x-1}\left(ĐK:t\ge0\right)\Leftrightarrow x-1=t^2\Leftrightarrow x=t^2+1\)

pt \(\Leftrightarrow\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}=2\Leftrightarrow\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}=2\Leftrightarrow t+1+t-1=2\Leftrightarrow t=1\left(tm\right)\)

Với t=1 \(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\) 

Câu b tương tự

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................

7 tháng 10 2019

trả lời

quy đồng là ra

hok tốt

7 tháng 10 2019

\(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{5\sqrt{x}}{\sqrt{x}+3}=\frac{22}{x-9}\left(ĐK:x\ge0;x\ne9\right)\)

\(\Leftrightarrow\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)-5\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}=\frac{22}{x-9}\)

\(\Rightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)-5\sqrt{x}\left(\sqrt{x}-3\right)=22\)

\(\Leftrightarrow x+5\sqrt{x}+6-5x+15\sqrt{x}=22\)

\(\Leftrightarrow-4x+20\sqrt{x}-16=0\)

\(\Leftrightarrow x-5\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-4=0\\\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=16\left(tm\right)\\x=1\left(tm\right)\end{cases}}}\)

Vậy tập nghiệm của phương trình đã cho là : \(S=\left\{1;16\right\}\)

Chúc bạn học tốt !!!