K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

-1 nha bạn!

Chúc bạn học tốt! :)

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

19 tháng 1 2018

Bấm cái pt này vào máy tính casio, được nghiệm = -1. => Tách: 
\(x^4+3x^3+4x^2+3x+1= 0 $\)
\(\Leftrightarrow\)\(x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0 \)
\(\Leftrightarrow\)\( x^3(x+1) +2x^2(x+1) + 2x(x+1) +(x+1)=0 \)
\(\Leftrightarrow\) \((x^3+2x^2+2x+1)(x+1)=0\)       (1) 

Đưa cái pt bậc 3 vào máy tính casio (mode-> eqn-> degree 3 hoặc \(ax^3+bx^2+cx+d\)), được 1 nghiệm = -1 
tách như trên: 
\(x^3+2x^2+2x+1=0 \)
\(\Leftrightarrow\)\(x^3+x^2+x^2+x+x+1=0 \)
\(\Leftrightarrow\)\(x^2(x+1) +x(x+1) + (x+1)=0 \)
\(\Leftrightarrow\)\((x^2+x+1)(x+1)=0 \)            (2)
Chứng minh được cái pt bậc 2 vô nghiệm bằng cách ép bình phương cộng với 1 số dương thì lớn hơn 0.    (3) 
Từ (1),(2),(3) => x+1=0 <=> x=-1. 
Kết Luận....

19 tháng 1 2018

phương uyên copy ??? , m chứng minh cái (x^2+x+1) vô nghiệm  đi copy sủa cái cmmm 

3 tháng 2 2017

Ta có:  PT <=> x^4 + x^3 + 2x^3 + 2x^2 + 2x^2 + 2x + x +1

                 <=> x^3(x+1) + 2x^2(x+1) + 2x(x+1) + (x+1)

                 <=>  (x+1)(x^3 + 2x^2 +1)

                 <=>  (x+1)(x^3 + 2x^2 + 1)

                 <=> x+1=0 <=> x=-1     (x^3 + 2x^2 +1  vô nghiệm)

3 tháng 2 2017

mình ko biết xin lỗi bạn nha

mình ko biết xin lỗi bạn nha

mình ko biết xin lỗi bạn nha

mình ko biết xin lỗi bạn nha

12 tháng 4 2020

a)  \(xy+x+2y=-2\)

\(xy+x+2y+2=0\)

\(x\left(y+1\right)+2\left(y+1\right)=0\)

\(\left(x+2\right)\left(y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=-1\end{cases}}}\)

b) Chia cả hai vế cho x^2 ta được

\(x^2-3x+4-\frac{3}{x}+\frac{1}{x^2}=0\)

\(\left(x^2+\frac{1}{x^2}\right)-3\left(x+\frac{1}{x}\right)+4=0\)

Đặt a=x+1/x thì => x^2 +1/x^2=a^2-2, ta được

\(a^2-3a+2=0\)

\(a\left(a-2\right)-\left(a-2\right)=0\)

\(\left(a-1\right)\left(a-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)

Với a=1 ta có: \(x^2-x+1=0\)vô nghiệm

Với a=2 ta có: \(x^2-2x+1=0\Rightarrow x=1\)

Vậy nghiệm của pt là x=1

25 tháng 4 2017

tui giải câu a thôi nha

chia phương trình cho \(x^2\)ta có:

\(x^2+3x+4+\frac{3}{x}+\frac{1}{x^2}\)=0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+3\left(x+\frac{1}{x}\right)+4\)=0

đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)\(\Rightarrow a^2-2+3a+4=0\)\(\Leftrightarrow a^2+3a+2=0\)

\(\Leftrightarrow a^2+a+2a+2=0\Leftrightarrow\left(a+1\right)\left(a+2\right)=0\)

\(\Leftrightarrow a+1=0\)hoặc\(a+2=0\)

*a+1=0\(\Rightarrow a=-1\Rightarrow x+\frac{1}{x}=1\Rightarrow x+\frac{1}{x}-1=0\)\(\Leftrightarrow\frac{x^2-x+1}{x}=0\Leftrightarrow x^2-x+1=0\)

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)\(\Rightarrow\)loại

*a+2=0\(\Rightarrow a=-2\Rightarrow x+\frac{1}{x}=-2\Rightarrow x+\frac{1}{x}+2=0\)\(\Leftrightarrow\frac{x^2+2x+1}{x}=0\Leftrightarrow\frac{\left(x+1\right)^2}{x}=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm x=-1

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x