K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

*****~~~~~\(\sqrt{4x+2}=\sqrt{x^2+4x+1}\left(1\right)\)~~~~~*****

(Mình ko chắc phần mình làm ĐKXĐ, bạn xem thử coi đúng hông nha!)

\(ĐKXĐ:\hept{\begin{cases}\sqrt{4x+2}\ge0\\\sqrt{x^2+4x+1}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{1}{2}\\\left(x+2\right)^2-3\ge-3\Leftrightarrow x=-2\end{cases}\Leftrightarrow x\ge-\frac{1}{2}}\)

Bình phương cả 2 vế, ta được:

\(\left(1\right)\Leftrightarrow4x+2=x^2+4x+1\)

\(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\left(\text{nhận}\right)\\x=-1\left(\text{loại}\right)\end{cases}}}\)

Vậy: \(S=\left\{1\right\}\)

(Nếu đúng thì tíck cho mìk vs nhé!)

9 tháng 5 2018

a) \(\sqrt{x^2+4x+5}=1\)

\(\Leftrightarrow\sqrt{x^2+4x+5}=\sqrt{1}\)

\(\Rightarrow x^2+4x+5=1\)

\(\Rightarrow x^2+4x+4=0\)

\(\Rightarrow\left(x+2\right)^2=0\)

\(\Rightarrow x+2=0\)

\(\Rightarrow x=-2\)

b) \(\sqrt{x^2+4x+4}=2x-1\)

\(\Leftrightarrow\left(\sqrt{x^2+4x+4}\right)^2=\left(2x-1\right)^2\)

\(\Leftrightarrow x^2+4x+4=\left(2x-1\right)^2\)

\(\Leftrightarrow\left(x+2\right)^2=\left(2x-1\right)^2\)

\(\Rightarrow x+2=2x-1\)

\(\Rightarrow-x=-3\)

\(\Rightarrow x=3\)

10 tháng 5 2018

\(\sqrt{x^2+4x+5}=1\Leftrightarrow x^2+4x+5=1\Leftrightarrow x^2+4x+4=0\Leftrightarrow x=-2\)

30 tháng 7 2018

kuchiyose edo tensei

nhờ vào năng lực rinegan , ta có thể  đoán dc

  \(\left(\sqrt{1+x}+\sqrt{8-x}\right)^2=1+x+8-x-2\sqrt{\left(X+1\right)\left(8-x\right)}\)

vậy pt sẽ như sau

\(a,\left(\sqrt{1+x}+\sqrt{8-x}\right)^2-\sqrt{\left(1+x\right)\left(8-x\right)}=3\) " thêm bớt nếu m thông minh sẽ hiểu "

\(9+2\sqrt{\left(1+x\right)\left(8-x\right)}-\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

\(\sqrt{\left(1+x\right)\left(8-x\right)}=-6\)

\(\left(1+x\right)\left(8-x\right)=36\)

đến đây m có thể tự làm

c)  \(\sqrt{x+5}=5-x^2\)

      \(x+5=\left(5-x\right)^2\)

     \(x+5=x^4-10x^2+25\)  " rồi xong pt bậc 4 :)

 \(x^4-10x^2-x+20=0\)

\(x^4=10x^2+x-20\)

\(x^4+2mx^2+m^2=10x^2+x-20+2mx^2+m^2\)

\(\left(x^2+m\right)^2=2x^2\left(5+m\right)+x+\left(m^2-20\right)\)

\(\Delta=1-8\left(5+m\right)\left(m^2-20\right)\)

\(\Delta=1-8\left(5m^2-100+m^3-20m\right)\)

\(\Delta=1-40m^2+800-8m^3+160m\)

\(\Delta=-\left(2m+9\right)\left(4m^2+2m-89\right)\)

lấy m= -9/2 , cho nhanh thay vào ta đươc

\(\left(x^2-\frac{9}{2}\right)^2=2x^2\left(5-\frac{9}{2}\right)+x+\left(\frac{9}{2}^2-20\right)\)

\(\left(x^2-\frac{9}{2}\right)^2=x^2+x+\frac{1}{4}\)

\(\left(x^2-\frac{9}{2}\right)^2=\left(x+\frac{1}{2}\right)^2\)

\(\hept{\begin{cases}x^2-\frac{9}{2}=x+\frac{1}{2}\\x^2-\frac{9}{2}=-x-\frac{1}{2}\end{cases}}\)

đến đây cậu có thể làm tiếp :)

câu B hơi gắt cần time suy nghĩ :)

3 tháng 7 2019

Giải :

\(\text{Đ/k : }x^2-4x-6\ge0\)

Bình phương 2 vế phương trình, ta được :

\(x^2-4x-6=15\)

\(\Leftrightarrow x^2-4x-21=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)

Thế x tìm được vào Đ/k ta thấy cả \(x=7\) và \(x=-3\) đều thỏa mãn.

Vậy \(S=\left\{7;-3\right\}\).

19 tháng 5 2018

để đâu bn

15 tháng 8 2019

bình phương 2 vế ta có:

\(25x^4+4x^2+3x=\left(x+3\right)^25x^2+4\)

\(25x^4+4x^2+3x=x^2+9.5x^2+4\)

\(25x^4+3x=9.5x^2\)

\(5x^2+3x=9\)

\(5x^2+3x-9\)