Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2\sqrt{3x}+12-4x+5\sqrt{3}=0\)
\(\Leftrightarrow-4x+2\sqrt{3}\cdot\sqrt{x}+12+5\sqrt{3}=0\)
Đặt \(\sqrt{x}=a\left(a>=0\right)\)
Phương trình trở thành \(-4a^2+2\sqrt{3}a+12+5\sqrt{3}=0\)
\(\Delta=\left(2\sqrt{3}\right)^2-4\cdot\left(-4\right)\cdot\left(12+5\sqrt{3}\right)\)
\(=12+16\left(12+5\sqrt{3}\right)\)
\(=12+192+80\sqrt{3}=204+80\sqrt{3}\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{-2\sqrt{3}-\sqrt{204+80\sqrt{3}}}{-8}=\dfrac{2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{8}\left(nhận\right)\\a_2=\dfrac{-2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{-8}\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow a=\dfrac{2\sqrt{3}+2\sqrt{26+20\sqrt{3}}}{8}=\dfrac{\sqrt{3}+\sqrt{26+20\sqrt{3}}}{4}\)
\(\Leftrightarrow x=a^2\simeq5,66\)
c: \(\Leftrightarrow x\sqrt{2}+5\sqrt{2}-4x-5-4\sqrt{2}=0\)
\(\Leftrightarrow x\left(\sqrt{2}-4\right)+\sqrt{2}-5=0\)
\(\Leftrightarrow x=\dfrac{5-\sqrt{2}}{\sqrt{2}-4}=\dfrac{-18-\sqrt{2}}{14}\)
d: \(\Leftrightarrow\dfrac{7x+1-4x-4002}{2001}=\dfrac{3x+2}{2003}-1\)
\(\Leftrightarrow3x-4001=0\)
hay x=4001/3
a) ĐKXĐ: \(3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)
Phương trình đã cho tương đương với: \(\hept{\begin{cases}-4x^2+21x-22\ge0\\3x-2=16x^4-168x^3+617x^2-924x+484\end{cases}}\)
Giải nhanh bđt ta được: \(\hept{\begin{cases}\frac{21-\sqrt{89}}{8}\le x\le\frac{21+\sqrt{89}}{8}\\16x^4-168x^3+617x^2-927x+486=0\end{cases}}\)
Giải phương trình \(16x^4-168x^3+617x^2-927x+486=0\)
\(\Leftrightarrow\left(4x^2-23x+27\right)\left(4x^2-19x+18\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{23+\sqrt{97}}{8}\\x=\frac{23-\sqrt{97}}{8}\end{cases}}hay\orbr{\begin{cases}x=\frac{19+\sqrt{73}}{8}\\x=\frac{19-\sqrt{73}}{8}\end{cases}}\)
So với điều kiện, ta kết luận phương trình có tập nghiệm \(S=\left\{\frac{23-\sqrt{97}}{8};\frac{19+\sqrt{73}}{8}\right\}\)
Tặng bạn câu này, chúc bạn học tốt. Câu sau bạn tự làm nha