K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2021

\(ĐK:x\ge\frac{2}{3}\)(/*)

\(\sqrt{3x-2}-\sqrt{x+1}=2x^2-x-3\Leftrightarrow\sqrt{3x-2}-\sqrt{x+1}=\left(2x-3\right)\left(x+1\right)\)\(\Leftrightarrow\sqrt{3x-2}-\sqrt{x+1}=\left(x+1\right)\left[\left(3x-2\right)-\left(x+1\right)\right]\)

Đặt \(\sqrt{3x-2}=a,\sqrt{x+1}=b\left(a,b>0\right)\)thì phương trình trở thành \(a-b=b^2\left(a^2-b^2\right)\Leftrightarrow\left(a-b\right)\left(ab^2+b^3-1\right)=0\)

* Xét \(a=b\)thì ta được: \(\sqrt{3x-2}=\sqrt{x+1}\Leftrightarrow3x-2=x+1\Leftrightarrow x=\frac{3}{2}\left(t/m\right)\)

* Xét \(ab^2+b^3-1=0\Leftrightarrow b^2\left(a+b\right)=1\)(o)

Với điều kiện (/*) thì ta có: \(b=\sqrt{x+1}\ge\sqrt{\frac{2}{3}+1}=\sqrt{\frac{5}{3}}\Rightarrow b^2\ge\frac{5}{3}\)và \(a\ge0\)

\(\Rightarrow b^2\left(a+b\right)\ge\frac{5}{3}\left(0+\sqrt{\frac{5}{3}}\right)>1\)suy ra (o) vô nghiệm

Vậy nghiệm duy nhất của phương trình là \(\frac{3}{2}\).

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

ĐK \(\hept{\begin{cases}x\ge1\\\frac{-1-\sqrt{3}}{2}\le x\le\frac{-1+\sqrt{3}}{2}\end{cases}}\)

\(PT\Leftrightarrow2x^3-x^2-3x-1+\sqrt{2x^3-3x+1}-\sqrt[3]{x^2+2}=0\)

Đặt \(\sqrt{2x^3-3x+1}=a,\sqrt[3]{x^2+2}=b\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a^2-b^3+a-b=0\)

\(\Rightarrow a=b=1\)

Tính ra

8 tháng 3 2020

Bạn giải thích cho mình ba dòng cuối đi

4 tháng 7 2019

1   ĐKXD \(x\ge1\)

.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)

Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)

=> \(2b^2+3a^2=2x^2+5x-1\)

=> \(2b^2+3a^2-7ab=0\)

<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)

\(a=2b\)

=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)

=> \(4x^2+3x+5=0\)vô nghiệm

\(a=\frac{1}{3}b\)

=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)

=> \(x^2-8x+10=0\)

<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)

Vậy \(x=4+\sqrt{6}\)

4 tháng 7 2019

ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)

\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)

<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)

 \(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)

<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)

Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)

nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)

Vậy x=-2

Em kiểm tra lại đề bài câu trên nhé

18 tháng 8 2015

Điều kiện xác định phương trình \(x\ge0,2x^2+3x-3\ge0.\)

Ta dùng phép nhân liên hợp phương trình viết lại dưới dạng

\(\sqrt{3x^2-2x+1}+x-2=\sqrt{2x^2+3x-3}-\sqrt{x}\)       (1)

\(\Leftrightarrow\frac{2x^2+2x-3}{\sqrt{3x^2-2x+1}-x+2}=\frac{2x^2+2x-3}{\sqrt{2x^2+3x-3}+\sqrt{x}}\)

Trường hợp 1. \(2x^2+2x-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{7}}{2}\)  (thỏa mãn).

Trường hợp 2.  \(\sqrt{3x^2-2x+1}-x+2=\sqrt{2x^2+3x-3}+\sqrt{x}\)      (2)

Lấy (1)+(2) cho ta \(3x^2-2x+1=2x^2+3x-3\Leftrightarrow x^2-5x+4=0\Leftrightarrow x=1,4.\)  Tuy nhiên x=4 không thỏa mãn.

Vậy phương trình có ba nghiệm \(x=1,\frac{-1\pm\sqrt{7}}{2}\)

 

ái chà chà