K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

cái nằm dưới căn pt đc (7x-4)(x^2-x+3) , (7x-4)+(x^2-x+3)=x^2+6x-1 ,đặt ẩn phụ mà triển

5 tháng 10 2015

không cần điều kiện cũng được, giải ra x = 1 hoặc x = 7, lấy ra thay lại xem pt có xác định và thỏa không là được

5 tháng 10 2015

RA BẬC CAO SAO GIẢI

 

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

29 tháng 11 2017

\(\Rightarrow\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{6}\)

ĐK:\(x\ne-2;-3;-4;-5\)

MTC:\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right).6\)

Quy đồng khử mẫu:

30 tháng 11 2017

Đk x khác -2;-3;-4;-5

pt <=> 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) = 1/6

<=> 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 = 1/6

<=> 1/x+2 - 1/x+5 = 1/6

<=> x+5-x-2/(x+2).(x+5) = 1/6

<=> 3/(x+2).(x+5) = 1/6

<=> (x+2).(x+5) = 3 : 1/6 = 18

<=> x^2+7x+10 = 18

<=> x^2+7x-8=0

<=> (x-1).(x+8) = 0

<=> x1=0 hoặc x+8=0

<=> x=1 hoặc x=-8

k mk nha

20 tháng 7 2019

ĐK \(x\ge\frac{4}{7}\)

PT <=> \(x^2+6x-1+2=2\sqrt{\left(7x-4\right)\left(x^2-x+3\right)}\)

<=> \(\left(\sqrt{x^2-x+3}-\sqrt{7x-4}\right)^2+2=0\) vô nghiệm do VT>0 với mọi \(x\ge\frac{4}{7}\)

Vậy PT vô nghiệm

14 tháng 10 2019

a,\(x^2-7x+\sqrt{x^2-7x+8}=12\)

ĐKXĐ: .....

Đặt \(x^2-7x=t\)

Phương trình trở thành

\(t+\sqrt{t+8}=12\)

\(\Leftrightarrow\sqrt{t+8}=12-t\)

\(\Leftrightarrow t+8=\left(12-t\right)^2\)

\(\Leftrightarrow t+8=144-24t+t^2\)

\(\Leftrightarrow t^2-25t+136=0\)

\(\Leftrightarrow\left(t-17\right)\left(t-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-17=0\\t-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=17\\t=8\end{cases}}}\)

tại t = 17 , ta có

\(x^2-7x=17\Leftrightarrow x^2-7x-17=0\)

\(\Leftrightarrow.......\)

Tại t = 8 ta có

\(x^2-7x=8\Leftrightarrow x^2-7x-8=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}}\)

b, \(x^2+4x+5=2\sqrt{2x+3}\)

mik ko bt :)

14 tháng 10 2019

a,đkxđ:\(x^2-7x+8\ge0\Leftrightarrow x^2-2\cdot\frac{7}{2}x+\frac{49}{4}-\frac{17}{4}\ge0\Leftrightarrow\left(x-\frac{7}{2}\right)^2\ge\frac{17}{4}\Leftrightarrow\hept{\begin{cases}x-\frac{7}{2}\ge\frac{\sqrt{17}}{2}\approx2,06\\x-\frac{7}{2}\le-\frac{\sqrt{17}}{2}\approx-2,06\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5,56\\x\le1,44\end{cases}}\)

\(\Leftrightarrow\left(x^2-7x+8\right)+\sqrt{x^2-7x+8}=12+8=20\)

\(\Leftrightarrow4\left(x^2-7x+8\right)+4\sqrt{x^2-7x+8}+1=20\cdot4+1=81\)

\(\Leftrightarrow\left(2\sqrt{x^2-7x+8}+1\right)^2=81\)

\(\Leftrightarrow2\sqrt{x^2-7x+8}+1=\pm9\)

Mà vế trái >0 nên \(2\sqrt{x^2-7x+8}+1=9\)

\(\Leftrightarrow\sqrt{x^2-7x+8}=\frac{9-1}{2}=4\)

\(\Leftrightarrow x^2-7x+8=16\)

\(\Leftrightarrow x^2-7x-8=0\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)