K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

=  \([\left(4x\right)^2-2\times4x\times1+1]+4\)

\(=\left(4x-1\right)^2+4\)

26 tháng 7 2018

xin lỗi nha, bài đó bằng có một cái 1/5 thôi, tại viết sai

26 tháng 7 2018

ĐK : \(X\ne-1;-3;-7;-9\)

\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x+63}=\frac{1}{5}\)

\(\frac{1}{\left(x+2\right)^2-1}+\frac{1}{\left(x+4\right)^2-1}+\frac{1}{\left(x+6\right)^2-1}+\frac{1}{\left(x-8\right)^2-1}=\frac{1}{5}\)

\(\frac{1}{\left(x+2-1\right)\left(x+2+1\right)}+\frac{1}{\left(x+4-1 \right)\left(x+4+1\right)}+\frac{1}{\left(x+6-1\right)\left(x+6+1\right)}+\frac{1}{\left(x+8-1\right)\left(x+8+1\right)}=\frac{1}{5}\)

\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)

\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+....-\frac{1}{x+9}\right)=\frac{1}{5}\)

\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+9}\right)=\frac{1}{5}\)

\(\frac{1}{x+1}-\frac{1}{x+9}=\frac{1}{5}:\frac{1}{2}=\frac{2}{5}\)

\(\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)

\(2\left(x+1\right)\left(x+9\right)=40\)

\(2x^2+20x+18=40\Leftrightarrow x^2+10x+9=20\)

\(\Leftrightarrow x^2+10x-11=0\Leftrightarrow x^2+10x-10-1=0\)

\(\Leftrightarrow\left(x^2-1\right)+\left(10x-10\right)=0\Leftrightarrow\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+11\right)=0\)

\(\orbr{\begin{cases}x-1=0\\x++11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}}\)( Thõa mãn ) 

Vậy ...............

20 tháng 6 2017

=Ta có : $16x^2-8x+5=0$

$=>(16x^2-8x+1)+4=0$

$=>(4x-1)^2+4=0$

$=>(4x-1)^2=-4$ (vô lý vì $(4x-1)^2 \geq 0$)

Vậy pt vô nghiệm.

20 tháng 6 2017

Ta có: \(16x^2-8x+5\)

= \(\left(4x\right)^2-2.4x.1+1+4\)

= \(\left(4x-1\right)^2+4>0\) với mọi x

Vậy pt trên vô nghiệm

2 tháng 1 2018

=>\(\frac{\left(x+2\right)^2+2}{x+2}+\frac{\left(x+8\right)^2+8}{x+8}\)=\(\frac{\left(x+4\right)+4}{x+4}+\frac{\left(x+6\right)^2+6}{x+6}\)

=>2x+10+\(\frac{2}{x+2}+\frac{8}{x+8}\)=2x+10+\(\frac{4}{x+4}+\frac{6}{x+6}\)

=>-x\(\left(\frac{1}{x+2}-\frac{1}{x+4}-\frac{1}{x+6}+\frac{1}{x+8}\right)\)=0

=>\(\orbr{\begin{cases}x=0\\\frac{1}{x+2}-.....+\frac{1}{x+8}=0\end{cases}}\)

Voi \(\frac{1}{x+2}-....\)=0 ta co

Dat x+5=t

=>\(\frac{1}{t-3}-\frac{1}{t-1}-\frac{1}{t+1}+\frac{1}{t+3}\)=0

=> \(2t\left(\frac{1}{t^2-1}+\frac{1}{t^2-9}\right)=0\)

=>t=0

=>x=-5

Vay phuong trinh co nghiem x=0;-5

2 tháng 1 2018

toán lớp 8 mà đi giải phương trình hả má

11 tháng 3 2018

=> \(\frac{(x+2)^2+2}{x+2}+\frac{(x+8)^2+8}{x+8}=\frac{(x+4)+4}{x+4}+\frac{(x+6)^2+6}{x+6}\)

=> 2x + 10 + \(\frac{2}{x+2}+\frac{8}{x+8}=2x+10+\frac{4}{x+4}+\frac{6}{x+6}\)

=>-x \((\frac{1}{x+2}-\frac{1}{x+4}-\frac{1}{x+6}-\frac{1}{x+8})=0\)

                              \(x=0\)

\(=>\orbr{\frac{1}{x+2}}-.....+\frac{1}{x+8}=0\)

Với \(\frac{1}{x+2}-...=0\). Ta có :

Đặt x + 5 = t

=> \(\frac{1}{t-3}-\frac{1}{t-1}-\frac{1}{t+1}+\frac{1}{t+3}=0\)

\(=>2t(\frac{1}{t^2-1}+\frac{1}{t^2-9})=0\)

=> t = 0

=> x = -5

Vậy phương trình có nghiệm x= 0 ; - 5

15 tháng 3 2018

x= 2125500 và x = 0 là nghiệm của phương trình

27 tháng 3 2019

\(y^2+4^x+2y-2^{x+1}+2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(4^x-2^{x+1}+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}\)

\(\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)

\(\Leftrightarrow\frac{x^2+4x+4+2}{x+2}+\frac{x^2+16x+64+8}{x+8}=\frac{x^2+8x+16+4}{x+4}+\frac{x^2+12x+36+6}{x+6}\)

\(\Leftrightarrow2x+10+\frac{2}{x+2}+\frac{8}{x+8}=2x+10+\frac{4}{x+4}+\frac{6}{x+6}\)

\(\Leftrightarrow\frac{2}{x+2}+\frac{8}{x+8}=\frac{4}{x+4}+\frac{6}{x+6}\)

Tới đây quy đồng làm tiếp nhé