Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3+4x2+x-6=0
<=> x3+x2-2x+3x2+3x-6=0
<=>x(x2+x-2)+3(x2+x-2)=0
<=>(x+3)(x2+x-2)=0
<=>(x+3)(x2+2x-x-2)=0
<=>(x+3)[x(x+2)-(x+2)]=0
<=>(x+3)(x-1)(x+2)=0
=> x+3=0 hay
x-1=0 hay
x+2=0
<=> x=-3 hay x=1 hay x=-2
b)x3-3x2+4=0
\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
a: =>5-x+6=12-8x
=>-x+11=12-8x
=>7x=1
hay x=1/7
b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
=>12x+10=6x+5
=>6x=-5
hay x=-5/6
d: =>(x-2)(x-3)=0
=>x=2 hoặc x=3
Bài 2:
\(=\dfrac{x^2\left(x^2+4\right)-2x\left(x^2+4\right)}{x^2+4}=x^2-2x\)
Bài 1:
a: \(=\left(\dfrac{2}{3}:\dfrac{-1}{9}\right)\cdot x^4y^2z^6=-6x^4y^2z^6\)
b: \(=-12x^8-21x^5\)
c: =x^3+8
d: \(=125x^3-75x^2+15x-1\)
a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)
\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)
=>-33x=34
hay x=-34/33
b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)
\(\Leftrightarrow2x^2=4\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: \(x^2-2\sqrt{3}x+3=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)
hay \(x=\sqrt{3}\)
d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
hay \(x=\sqrt{2}\)
Bài 4 : Tìm x biết:
a, 4x2 - 49 = 0
\(\Leftrightarrow\) (2x)2 - 72 = 0
\(\Leftrightarrow\) (2x - 7)(2x + 7) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-7=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b, x2 + 36 = 12x
\(\Leftrightarrow\) x2 + 36 - 12x = 0
\(\Leftrightarrow\) x2 - 2.x.6 + 62 = 0
\(\Leftrightarrow\) (x - 6)2 = 0
\(\Leftrightarrow\) x = 6
e, (x - 2)2 - 16 = 0
\(\Leftrightarrow\) (x - 2)2 - 42 = 0
\(\Leftrightarrow\) (x - 2 - 4)(x - 2 + 4) = 0
\(\Leftrightarrow\) (x - 6)(x + 2) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
f, x2 - 5x -14 = 0
\(\Leftrightarrow\) x2 + 2x - 7x -14 = 0
\(\Leftrightarrow\) x(x + 2) - 7(x + 2) = 0
\(\Leftrightarrow\) (x + 2)(x - 7) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)
1. ĐKXĐ: $x\neq 1$
Sửa lại đề 1 chút:
$\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}$
$\Leftrightarrow \frac{x^2+x+1}{(x-1)(x^2+x+1)}-\frac{3x^2}{(x-1)(x^2+x+1)}=\frac{2x(x-1)}{(x-1)(x^2+x+1)}$
$\Leftrightarrow x^2+x+1-3x^2=2x(x-1)$
$\Leftrightarrow 4x^2-3x-1=0$
$\Leftrightarrow (4x+1)(x-1)=0$
Vì $x\neq 1$ nên $x=-\frac{1}{4}$
2. ĐKXĐ: $x\neq 0;2$
PT \(\Leftrightarrow \frac{7}{8x}+\frac{5-x}{4x(x-2)}=\frac{x-1}{2x(x-2)}+\frac{1}{8(x-2)}\)
\(\Leftrightarrow \frac{7(x-2)}{8x(x-2)}+\frac{2(5-x)}{8x(x-2)}=\frac{4(x-1)}{8x(x-2)}+\frac{x}{8x(x-2)}\)
\(\Leftrightarrow 7(x-2)+2(5-x)=4(x-1)+x\)
\(\Leftrightarrow 5x-4=5x-4\) (luôn đúng)
Vậy pt có nghiệm $x\in\mathbb{R}$ với $x\neq 0;2$
bạn sử dụng : \(\sqrt{x}\)= a <=> a > hoặc bằng 0
và x= a^2