Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 . \(\sqrt{x^4-2x^2+1}=x-1\)
<=> \(\sqrt{\left(x^2-1\right)^2}=x-1\)
<=> \(x^2-1=x-1\)
<=> \(x^2-x=0\)(vậy pt vô nghiệm)
1,\(\sqrt{\left(x^2-1\right)^2}=x-1\)
<=>\(x^2-x=0\)
<=>\(\orbr{\begin{cases}x1=0\\x2=1\end{cases}}\)
1,\(\sqrt{\left(x^2+4\right)}=5-\sqrt{\left(x^2+10\right)}\)
<=>\(x^2+4=25-10\sqrt{x^2+10}+x^2+10\)
<=>x^2 = -0.39 vô lý => vô nhiệm
1. đk: \(x\ge5\)
Ta có: \(PT\Leftrightarrow\sqrt{\left(x+1\right)\left(5x+9\right)}=\sqrt{\left(x+4\right)\left(x-5\right)}+5\sqrt{x+1}\)
\(\Leftrightarrow\left(x+1\right)\left(5x+9\right)=x^2+24x+5+10\sqrt{\left(x+1\right)\left(x+4\right)\left(x-5\right)}\)
\(\Leftrightarrow5x^2+14x+9-x^2-24x-5-10\sqrt{\left[\left(x+1\right)\left(x-5\right)\right]\left(x+4\right)}=0\)
\(\Leftrightarrow4x^2-10x+4-10\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}=0\)
\(\Leftrightarrow\left(2x^2-8x-10\right)+\left(3x+12\right)-5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}=0\)
\(\Leftrightarrow2\left(x^2-4x-5\right)+3\left(x+4\right)-5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}=0\)
Đặt \(\hept{\begin{cases}\sqrt{x^2-4x-5}=a\\\sqrt{x+4}=b\end{cases}}\) khi đó:
\(PT\Leftrightarrow2a^2+3b^2-5ab=0\)
\(\Leftrightarrow\left(2a^2-2ab\right)-\left(3ab-3b^2\right)=0\)
\(\Leftrightarrow2a\left(a-b\right)-3b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\2a-3b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=b\\2a=3b\end{cases}}\)
Nếu: \(a=b\Leftrightarrow\sqrt{x^2-4x-5}=\sqrt{x+4}\)
\(\Leftrightarrow x^2-4x-5=x+4\)
\(\Leftrightarrow x^2-5x-9=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{61}}{2}\right)\left(x-\frac{5-\sqrt{61}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5+\sqrt{61}}{2}=0\\x-\frac{5-\sqrt{61}}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{61}}{2}\left(tm\right)\\x=\frac{5-\sqrt{61}}{2}\left(ktm\right)\end{cases}}\)
Nếu: \(2a=3b\Leftrightarrow2\sqrt{x^2-4x-5}=3\sqrt{x+4}\)
\(\Leftrightarrow4\left(x^2-4x-5\right)=9\left(x+4\right)\)
\(\Leftrightarrow4x^2-25x-56=0\)
\(\Leftrightarrow\left(x-8\right)\left(4x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=8\left(tm\right)\\x=-\frac{7}{4}\left(ktm\right)\end{cases}}\)
Vậy \(x\in\left\{\frac{5+\sqrt{61}}{2};8\right\}\)
2. đk: \(x\ge\frac{1}{2}\)
Ta có: \(x^2-2x=2\sqrt{2x-1}\)
\(\Leftrightarrow\left(x-1\right)^2-1=2\sqrt{2x-1}\)
Đặt APKHT như sau: \(a-1=\sqrt{2x-1}\)
Khi đó ta có hệ sau: \(\hept{\begin{cases}x^2-2x=2\left(y-1\right)\\y^2-2y=2\left(x-1\right)\end{cases}}\)
Trừ vế trên cho vế dưới của HPT ta được:
\(x^2-2x-y^2+2y=2\left(y-1\right)-2\left(x-1\right)\)
\(\Leftrightarrow x^2-y^2-2x+2y-2y+2x=0\)
\(\Leftrightarrow x^2-y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=0\)
Nếu \(x-y=0\Leftrightarrow x-1=y-1\Leftrightarrow x-1=\sqrt{2x-1}\)
\(\Leftrightarrow x^2-2x+1=2x-1\)
\(\Leftrightarrow x^2-4x+2=0\)
\(\Leftrightarrow\left(x-2-\sqrt{2}\right)\left(x-2+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{2}\left(tm\right)\\x=2-\sqrt{2}\left(ktm\right)\end{cases}}\)
Nếu \(x+y=0\) mà \(x,y>0\) => vô lý
Vậy \(x=2+\sqrt{2}\)
3. ĐK: \(x^2-2x-1\ge0\Leftrightarrow x\le1-\sqrt{2}\text{ hoặc }x\ge1+\sqrt{2}\)
\(pt\Leftrightarrow\sqrt[3]{x^3-14}-\left(x-2\right)+2\sqrt{x^2-2x-1}=0\)
Ta sẽ chứng minh phương trình này có \(VT\ge VP\)
\(VT\ge\frac{x^3-14-\left(x-2\right)^3}{A^2+AB+B^2}+0\text{ }\left(A=\sqrt[3]{x^3-14};\text{ }B=x-2\right)\)
\(=\frac{6\left(x^2-2x-1\right)}{\left(A+\frac{B}{2}\right)^2+\frac{3B^2}{4}}\ge0=VP\text{ }\left(do\text{ }x^2-2x-1\ge0\right)\)
Dấu "=" xảy ra khi \(x^2-2x-1=0\Leftrightarrow x=1+\sqrt{2}\text{ hoặc }x=1-\sqrt{2}\)
\(\text{Kết luận: }x\in\left\{1+\sqrt{2};\text{ }1-\sqrt{2}\right\}\)
1)\(x^2-3x+1+\sqrt{2x-1}=0\)
ĐK:\(x\ge\frac{1}{2}\)
\(\Leftrightarrow x^2-3x+2+\sqrt{2x-1}-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(x-2\right)+\frac{2}{\sqrt{2x-1}+1}\right)=0\)
Suy ra x=1 và pt trong ngoặc chuyển vế bình phương lên đưuọc \(x=-\sqrt{2}+2\)
2)\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\) (bình phương luôn cũng được nhưng cơ bản là mình ko thích :| )
\(pt\Leftrightarrow\sqrt{x^2-2x+3}=\frac{x^2+1}{x+1}\)
\(\Leftrightarrow\sqrt{x^2-2x+3}-2=\frac{x^2+1}{x+1}-2\)
\(\Leftrightarrow\frac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}=\frac{x^2-2x-1}{x+1}\)
\(\Leftrightarrow\frac{x^2-2x-1}{\sqrt{x^2-2x+3}+2}-\frac{x^2-2x-1}{x+1}=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(\frac{1}{\sqrt{x^2-2x+3}+2}-\frac{1}{x+1}\right)=0\)
Pt \(\frac{1}{\sqrt{x^2-2x+3}+2}=\frac{1}{x+1}\Leftrightarrow\sqrt{x^2-2x+3}=x-1\)
\(\Leftrightarrow x^2-2x+3=x^2-2x+1\Leftrightarrow3=1\) (loại)
\(\Rightarrow x^2-2x-1=0\Rightarrow x=\frac{2\pm\sqrt{8}}{2}\)
\(\sqrt{x^2+x+1}=x+1\)
\(\Leftrightarrow\left(\sqrt{x^2+x+1}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+x+1=x^2+2x+1\)
\(\Leftrightarrow x=2x\)
\(\Leftrightarrow2x-x=0\)
\(\Leftrightarrow x=0\)
1. \(\sqrt{x^2+5x+20}=4\)
\(\Leftrightarrow\left(\sqrt{x^2+5x+20}\right)^2=4^2\)
\(\Leftrightarrow x^2+5x+20=16\)
\(\Leftrightarrow x^2+5x+20-16=0\)
\(\Leftrightarrow x^2+5x+4=0\)
\(\Leftrightarrow x^2+4x+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-1\end{cases}}}\)